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Abstract. We study the distribution of the number of points and of the zeroes of the zeta function in

different p-strata of Artin-Schreier covers over Fq when q is fixed and the genus goes to infinity. The p-strata

considered include the ordinary family, the whole family and the family of curves with p-rank equal to p−1.
While the zeta zeroes always approach the standard Gaussian distribution, the number of points over Fq

has a distribution that varies with the specific family.
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1. Introduction

Besides their central place in number theory, algebraic curves over finite fields also play a pivotal role in
applications via such fields as cryptography and error-correcting codes. In both theory and applications, a
key property of an algebraic curve over a finite field is its zeta function, which determines and is determined
by the number of points on the curve over the finite extensions of the base field. These zeta functions exhibit
a strong analogy with other zeta functions occurring in number theory, such as the Riemann zeta function,
with the added benefit that the analogue of the Riemann hypothesis is known by results of Weil.

In addition to studying curves individually, it is also profitable to study curves in families and ask aggregate
questions over families. Historically, this generally involved varying the finite field, as in the work of Deligne.
More recently, a series of results have emerged in which the finite field is fixed and other geometric parameters
are allowed to vary. Examples include the work Kurlberg and Rudnick [KR09] that studies the distribution of
the number of points on hyperelliptic curves as the genus grows. Similar statistics for the number of points
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have been computed for cyclic `-covers of the projective line [BDFL10b, BDFL11, Xio10a], plane curves
[BDFL10a], complete intersections in projective spaces [BK], general trigonal curves [Woo12], superelliptic
curves [CWZ], curves on Hirzebruch surfaces [EW], and a subfamily of Artin-Schreier covers [Ent12].

A finer statistic for these curves is the distribution of the zeroes of the zeta function. (Note that the
distribution of the points can be easily deduced from the distribution of the zeroes.) The problem of the
distribution of the zeroes in the global and mesoscopic regimes was considered by Faifman and Rudnick
[FR10] for hyperelliptic curves while [Xio10b], [Xio], and [BDFLS] treat the cases of cyclic `-covers, abelian
covers of algebraic curves, and Artin-Schreier covers respectively. On the other hand, Entin [Ent12] uses the
distributions of the number of points of a subfamily of Artin-Schreier covers to obtain some partial results
towards the pair correlation problem for the zeroes.

Artin-Schreier curves represent a special family because they cannot be uniformly obtained by base-
changing a scheme defined over Z. This is intimately related to the fact that their zeta function has an
expression in terms of additive characters of Fp, and not in terms of multiplicative characters as is the case
for the family of hyperelliptic curves and cyclic `-covers. On the other hand, the factor corresponding to
a fixed additive character has a nice description as an exponential sum (3), which allows one to do a fair
number of concrete computations. For instance, they can sometimes be used to show that the Weil bound
on the number of points is sharp (especially in the supersingular case [Gar05, GV92]).

The p-rank induces a stratification on the moduli space of Artin-Schreier covers of genus g. We would
like to remark that this stratification is not specific to the Artin-Schreier covers. Perhaps the best known
example is the case of elliptic curves. The moduli space of elliptic curves only has two p-strata – p-rank
0 (ordinary) and p-rank 1 (supersingular) – and these two classes of elliptic curves behave fundamentally
differently in many aspects. The ordinary stratum is Zariski dense in the moduli space, but there are only
finitely many supersingular F̄q-points in the moduli space of elliptic curves.

In the case of the Artin-Schreier covers, the picture is more complicated, as there are many intermediate
strata besides the p-rank 0 and the maximal p-rank stratum. But it is still the case that the p-rank 0
stratum is the smallest stratum in the moduli space ASg of Artin-Schreier covers of genus g. However, the
supersingular locus is strictly contained in this stratum and it is not easy to locate the supersingular covers
among those with p-rank 0. (See [Zhu].) On the other hand, the maximal p-rank stratum has the highest
dimension. Whenever the ordinary locus is nonempty (i.e. there are covers with p-rank equal to the genus),
the ordinary locus is irreducible. As it is noted in [PZ11, Example 2.9], in the case of p ≥ 3 that we are
interested in, the ordinary locus is nonempty whenever 2g/(p−1) is even. Otherwise, we can still talk about
the stratum of maximal p-rank, but it will not be irreducible; the maximal rank will be strictly smaller than
the genus (namely equal to g− p−1

2 ), and there is no ordinary locus.
Fix a finite field Fq of odd characteristic p. An Artin-Schreier cover is an Artin-Schreier curve for which we

fix an automorphism of order p and an isomorphism between the quotient and P1. Concretely, an Fq-point
of the moduli space of Artin-Schreier covers of genus g consists, up to Fq-isomorphism, of a curve of genus
g with affine model

Cf : yp − y = f(x),

where f(x) ∈ Fq(x) is a rational function, together with the automorphism y 7→ y + 1.
Let p1, . . . , pr+1 be the set of poles of f(x) and let dj be the order of the pole pj . Then the genus of Cf

is given by

(1) g(Cf ) =
p− 1

2

−2 +

r+1∑
j=1

(dj + 1)

 =
p− 1

2

r − 1 +

r+1∑
j=1

dj

 .

(See [PZ11, Lemma 2.6].) The p-rank is the integer s such that the cardinality of Jac(Cf )[p](Fq) is ps; by
the Deuring-Shafarevich formula, we have s = r(p − 1) for some integer r ≥ 0. We will write ASg,s for
the stratum with p-rank equal to s of the moduli space ASg. For example, s = 0 corresponds to one pole,
which can always be moved to infinity. This corresponds to the case in which f(x) is a polynomial that
was considered in [Ent12, BDFLS]. However, this case only corresponds to a piece, namely ASg,0, of the
whole moduli space ASg of Artin-Schreier covers of genus g. The next case is s = p − 1, corresponding to
two poles, which can always be moved to zero and infinity. Thus, this involves the case in which f(x) is a
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Laurent polynomial and its corresponding piece in the moduli space is ASg,p−1. For details on the moduli
space of Artin-Schreier curves and the p-rank stratification, we refer the reader to [PZ11].

The main object of this paper is the study of the distribution of the number of points and zeta zeroes
for the ordinary locus ASg,g which only appears when 2g/(p − 1) is even. In addition, we treat the cases
of ASg,p−1 of covers with p-rank equal to p − 1 and the whole family ASg. More precisely, we have the
following results.

Theorem 1.1. (1) Assume that 2g/(p− 1) is even. The average number of Fqk -points on an ordinary
Artin-Schreier cover in ASg,g(Fq) is
qk + 1 +O

(
q(−1/2+ε)(1+g/(p−1))+2k

)
p - k,

qk + 1 + p−1
1+q−1−q−2 +

∑
u| kp

p− 1

1 + q−u − q−2u

∑
e|u

µ(e)qu/e +O
(
q(−1/2+ε)(1+g/(p−1))+2k

)
p | k.

(2) The average number of Fqk -points on an Artin-Schreier cover in ASg(Fq) whose ramification divisor
is supported at r + 1 points and has degree d is

qk + 1 +O
(
q(ε−1)d+2k

)
p - k,

qk + 1 + (p− 1)qk/p + p−1
1+q−1 − (p− 1)

∑
u| kp

1

1 + qu

∑
e|u

µ(e)qu/e +O
(
q(ε−1)d+2k

)
p | k.

(3) The average number of Fqk -points on an Artin-Schreier cover in ASg,p−1(Fq) is
qk + 1 p - k,

qk + 1 + (p− 1)(qk/p − 1) p | k.

By Weil’s conjectures, the zeta function of Cf ,

ZCf (u) = exp

( ∞∑
k=1

Nk(Cf )
uk

k

)
,

where Nk(Cf ) is the number of points on Cf defined over Fqk , can be written as

ZCf (u) =
PCf (u)

(1− u)(1− qu)
,

where PCf (u) is a polynomial of degree 2g = (p − 1)(∆ − 1) with ∆ =
(
r +

∑r+1
j=1 dj

)
. Using Lemma 2.1

and the additive characters of Fp to write a formula for Nk(Cf ), it follows easily that

(2) PCf (u) =
∏
ψ

L(u, f, ψ),

where the product is taken over the non-trivial additive characters ψ of Fp, and L(u, f, ψ) are certain
L-functions (given later by (3)). Understanding the distribution of the zeroes of ZCf (u) amounts to under-
standing the distribution of the zeroes of each of the L(u, f, ψ) as f runs in the relevant family of rational
functions and the genus goes to infinity.

If we write

L(u, f, ψ) =

∆−1∏
j=1

(1− αj(f, ψ)u),

we have that αj(f, ψ) =
√
qe2πiθj(f,ψ) and θj(f, ψ) ∈ [−1/2, 1/2). We study the statistics of the set of angles

{θj(f, ψ)} as f varies in the family. For an interval I ⊂ [−1/2, 1/2), let

NI(f, ψ) := #{1 ≤ j ≤ ∆− 1 : θj(f, ψ) ∈ I},
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and

NI(Cf ) :=

p−1∑
j=1

NI(f, ψj).

We show that the number of zeroes with angle in a prescribed non-trivial subinterval I is asymptotic to

2g|I|, has variance asymptotic to 2(p−1)
π2 log(g|I|), and properly normalized has a Gaussian distribution.

Theorem 1.2. Fix a finite field Fq of characteristic p. Let AS denote the family of Artin-Schreier covers,
ordinary Artin-Schreier covers, or the p-rank p− 1 Artin-Schreier covers. Then for any real numbers a < b
and 0 < |I| < 1 either fixed or |I| → 0 while g|I| → ∞,

lim
g→∞

ProbAS(Fq)

a < NI(Cf )− 2g|I|√
2(p−1)
π2 log (g|I|)

< b

 =
1√
2π

∫ b

a

e−x
2/2dx.

This result is analogous to what was obtained in [BDFLS] for p-rank 0 Artin-Schreier covers and is
compatible with the philosophy of Katz and Sarnak [KS99]. In fact, Katz [Kat87] shows that the monodromy
of the L-functions defined in (3) is given by SL (2g/(p− 1)) when the dimension of the moduli space is big
enough. Since the dimension grows with the genus, this occurs when g is big enough. In particular, [DS94]
implies that the limiting distribution as g→∞ is Gaussian.

2. Basic Artin-Schreier theory

Fix an odd prime p and let Fq be a finite field of characteristic p with q elements. We consider, up to
Fq-isomorphism, pairs of curves with affine model

Cf : yp − y = f(x)

with f(x) a rational function together with the automorphism y 7→ y + 1.
For each integer n ≥ 1, denote by trn : Fqn → Fp the absolute trace map (not the trace to Fq).

Lemma 2.1. For each α ∈ P1(Fqn), the points in the fiber above α on the curve Cf : yp − y = f(x) are
defined over Fqn and the number of such points is

1 if f(α) =∞,

p if f(α) ∈ Fqn with trn f(α) = 0,

0 if f(α) ∈ Fqn with trn f(α) 6= 0.

Proof. This is a simple application of Hilbert’s Theorem 90. �

Let ψk, k = 0, . . . , p− 1 be the additive characters of Fp given by

ψk(a) = e2πika/p, k = 0, . . . , p− 1.

For each rational function f ∈ Fq(X) and non-trivial character ψ, we also define

Sn(f, ψ) =
∑

x∈P1(Fqn )

f(x)6=∞

ψ(trn(f(x))).

Then, using the fact that for any a ∈ Fp,
p−1∑
k=0

ψk(a) =

{
p a = 0,

0 a 6= 0,

it is easy to check that

PCf (u) =
∏
ψ 6=ψ0

L(u, f, ψ)
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where

(3) L(u, f, ψ) = exp

( ∞∑
n=1

Sn(f, ψ)
un

n

)
.

Let S = Fq[X,Z] be the homogeneous coordinate ring of P1 and denote Sd the Fq-subspace of S of
homogeneous polynomials of degree d. Notice that Sd contains the 0 polynomial and its size is exactly qd+1.

Since Artin-Schreier covers can be embedded in P1 × P1, we can think of Cf as the cover given by

Cg,h : yp − y =
g(X,Z)

h(X,Z)
,

where the fraction on the right hand side is obtained by homogenizing f(x) in the usual way.
Given f ∈ Sd, we will denote by f∗(X) ∈ Fq[X] the non-homogeneous polynomial resulting from f(X,Z)

by setting Z = 1. We observe that f∗ is polynomial of degree at most d. Similarly, let f∗(Z) ∈ Fq[Z] be the
non-homogeneous polynomial resulting from f(X,Z) by setting X = 1.

Given α = [αX : αZ ] ∈ P1(Fqk) and h ∈ Sd the value of h(α) can be zero or nonzero but if it is
nonzero, it is not well defined. When we want to discuss an actual nonzero value we will be talking about
h∗(α) := h(αX/αZ , 1) which is defined for α 6= [1 : 0] = ∞ and h∗(α) := h(1, αZ/αX) which is defined for
α 6= [0 : 1] = 0.

We recall that the rational function g
h can be evaluated in [αX : αZ ] as long as g, h ∈ Sd and (g(αX , αZ), h(αX , αZ)) 6=

(0, 0).
We now proceed to explicitly describe the families to be considered. The ordinary case occurs when the

p-rank is maximal, in other words, when r is maximal. For a given genus g, this happens when di = 1 in
formula (1) and 2g = (p− 1)2r. (Notice once again that this imposes a restriction on the possible values for
the genus, as 2g/(p − 1) must be even.) Thus, f(x) is a rational function with exactly r + 1 simple poles.
This corresponds to the fact that g(X,Z) and h(X,Z) are both homogeneous polynomials of degree r + 1
with no common factors and h(X,Z) is square-free.

We let

Ford
d = {(g(X,Z), h(X,Z)) : g(X,Z), h(X,Z) ∈ Sd, h square-free, (g, h) = 1} ,

with the understanding that d = r + 1.
As (g, h) range over Ford

d , the cover Cg,h ranges over each Fq-point of ASg,g exactly q − 1 times. Thus,
our problem becomes the study of statistics for Cg,h as (g, h) varies over Ford

d and d tends to infinity.
We will work with the full family of covers in ASg as well. In this case we do not have the restriction of

simple poles but we still require g(X,Z) and h(X,Z) not to have common factors.

F full
d = {(g(X,Z), h(X,Z)) : g(X,Z), h(X,Z) ∈ Sd, (g, h) = 1} .

We will then study the statistics as d goes to infinity which is the same as g going to infinity provided that
the number of poles r + 1 remains bounded.

Finally, we will consider another family given as follows. We say that h has factorization type v =

(r
d1,1
1 , . . . , r

d1,`1
1 , . . . , r

dm,1
m , . . . , r

dm,`m
m ) if

h = P
d1,1
1,1 · · ·P

d1,`1
1,`1

· · ·P dm,1m,1 · · ·P
dm,`m
m,`m

,

where the Pi,j are distinct irreducible polynomials of degree ri and ri 6= rj if i 6= j. Thus the degree of h is

given by d =
∑m
i=1 ri

∑`i
j=1 di,j .

Let

Fvd = {(g(X,Z), h(X,Z)) : g(X,Z), h(X,Z) ∈ Sd, (g, h) = 1, h has factorization type v}.

In this case, formula (1) implies 2g = (p − 1) (d− 2 +
∑m
i=1 `iri). Here

∑m
i=1 `iri represents the number of

poles and the p-rank is given by (p− 1) (
∑m
i=1 `iri − 1). We will assume the parameters m, ri’s and `i’s to

be fixed. This implies that the covers considered are all in the same p-rank. However, in general, the set of
the covers considered does not constitute the whole p-rank stratum. We will study the statistics as d goes
to infinity which is the same as g going to infinity with a bound on the number of poles.
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This family includes some important particular cases. Suppose that v = (1d). This corresponds to the
case of only one pole of multiplicity d. This pole can always be moved to infinity (i.e., h(X,Z) = Zd). After
dehomogenizing with Z = 1, this gives the family of p-rank 0 covers ASg,0:

F rank 0
d = {g(x) : deg(g) = d}.

The statistics for this family were studied in [Ent12, BDFLS].
Another interesting case is with v = (1d1 , 1d2). In this case we have two poles that can always be moved

to zero and infinity (i.e., h(X,Z) = Xd1Zd2). After dehomogenizing with Z = 1, this gives the family of
p-rank p− 1 covers ASg,p−1 indexed by Laurent polynomials with bidegree (d2, d1):

F rank p−1
d1+d2

= {g(x)/xd1 : deg(g) = d2}.
The statistics for this family is very similar to the statistics for ASg,0.

We will need to compute the number of elements in a family that satisfy certain values at certain points.
The following notation will be useful.

Definition 2.2. Let α1, . . . , αn, β1, . . . , βn ∈ P1(Fqk). Let Fd be any of the families under consideration.
We define

Fd(α1, . . . , αn, β1, . . . , βn) = {(g, h) ∈ Fd : (βi,Xh− βi,Zg)(αi) = 0, 1 ≤ i ≤ n} .

We remark that when β 6=∞ we identify β = [βX : βZ ] with βX
βZ
∈ Fqk thus

(βXh− βZg)(α) = 0⇐⇒ g(α)

h(α)
= β.

A particularly useful case is Fd(α, β). We remark that this value does not depend on the value of β, provided
that β 6=∞, as we prove below.

Lemma 2.3. Fix α ∈ P1(Fqk) of degree u over Fq. Let β ∈ Fqu . Let Fd be any of the families under
consideration. Then

|Fd(α, β)| = |Fd(α, 0)|.

Proof. Recall that

Fd(α, β) = {(g, h) ∈ Fd : βXh(α)− βZg(α) = 0}.

Now let g′ = βXh − βZg. Since βZ 6= 0 we have that (g, h) = 1 is equivalent to (g′, h) = 1. Then
(g, h) ∈ Fd(α, β) if and only if (g′, h) ∈ Fd(α, 0). �

3. The ordinary case

In this section, we consider the family

Ford
d = {(g(X,Z), h(X,Z)) : g(X,Z), h(X,Z) ∈ Sd, h square-free, (g, h) = 1} .

3.1. Heuristics. We want to calculate, for given α = [αX : αZ ], β = [βX : βZ ] ∈ P1(Fqu) such that
degα = u, the probability that

(4) (βXh− βZg)(αX , αZ) = 0

as (g, h) ∈ Ford
d .

Locally at α this means that we want to look at pairs (g∗, h∗) such that (m∗α)2 - h∗ (where m∗α ∈ Fq[X]
denotes the minimal polynomial of α over Fq) and (g∗(α), h∗(α)) 6≡ (0, 0) (mod (m∗α)2).

Therefore
(g∗, h∗) ≡ (γ1 + δ1mα, γ2 + δ2mα) (mod (m∗α)2),

with γi, δi ∈ Fq[X], and if they are nonzero, deg γi,deg δi < u. In addition, the conditions at α imply that
(γ1, γ2) 6= (0, 0) and (γ2, δ2) 6= (0, 0).

For each γ2 6= 0, there are qu choices for each of the other parameters, thus q3u(qu− 1) total possibilities.
If γ2 = 0, then there are qu − 1 choices for each of γ1 and δ2, and qu choices for δ1, for a total of qu(qu − 1)2

possibilities.
This yields a total of qu(qu − 1)(q2u + qu − 1) possibilities for

(
g∗ (mod (m∗α)2), h∗ (mod (m∗α)2)

)
.
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Now if β = [1 : 0] = ∞, condition (4) reduces to h∗(α) = 0 ⇐⇒ γ2 = 0. This leaves qu − 1 choices for
γ1 and δ2 respectively and qu choices for δ1. Thus the probability that g/h ∈ Ford

d takes the value ∞ at a
given point α is

qu(qu − 1)2

qu(qu − 1)(q2u + qu − 1)
=

q−u(1− q−u)

1 + q−u − q−2u
.

In all other cases, including β = 0, we must have h∗(α) 6= 0. So there are qu − 1 choices for γ2. Once we
know γ2, equation (4) fixes γ1(α) (and therefore γ1, since its degree is less than u), and we have qu choices
for each of δ1, δ2. Thus the probability g/h ∈ Ford

d takes the value β 6=∞ at a given point α is

q2u(qu − 1)

qu(qu − 1)(q2u + qu − 1)
=

q−u

1 + q−u − q−2u
.

Then, the heuristic confirms the result of Proposition 3.10, and the expected number of points of Theorem
1.1 for the family Ford

d .

3.2. The number of covers with local conditions. In this subsection, we are going to compute the
proportion of polynomials with certain fixed values. We will obtain the size of the family and the expected
number of points as corollaries.

Unless otherwise indicated, we fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq and βi ∈ Fqui for
1 ≤ i ≤ n (i.e. none of the βi’s is ∞). Also, β1, . . . , β` are not zero, and β`+1 = · · · = βn = 0. Finally, none
of the αi are conjugate to each other, i.e. all the minimal polynomials mαi are distinct.

We start by making the following observation.

Remark 3.1. If α = [α : 1] ∈ Fqk has degree u over Fq, then the map Sd → Fqu , h 7→ h∗(α) is a linear
map of Fq-vector spaces. The map is surjective as long as d ≥ u, and in this case its kernel has dimension
d + 1 − u. If d < u the elements 1, α, α2, . . . , αd are linearly independent over Fq. Therefore the image has
dimension d+ 1 and thus the kernel has dimension 0. In other words the map is injective and the preimage
of any element is either empty or a point.

If α = [1 : 0] = ∞, then it has degree 1 over Fq and a condition fixing a value for h(α) can be rewritten
in terms of h∗(1) such that it does become linear and the reasoning above applies.

Lemma 3.2. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq such that none of the αi are conjugate
to each other, and βi ∈ Fqui for 1 ≤ i ≤ n such that β1, . . . , β` are not zero, and β`+1 = · · · = βn = 0. Fix
g ∈ Sd such that g(αi) = 0 for `+ 1 ≤ i ≤ n, and g(αi) 6= 0 for 1 ≤ i ≤ `. Then we have

|{h ∈ Sd : (βi,Xh− βi,Zg)(αi) = 0, 1 ≤ i ≤ n}| =


qd+1−

∑`
i=1 ui d ≥

∑`
i=1 ui,

0 or 1 otherwise.

If g(αi) 6= 0 for some `+ 1 ≤ i ≤ n, or g(αi) = 0 for some 1 ≤ i ≤ ` then the above set is empty.

Proof. For βi 6= 0, the condition imposed over h is h(αi) = g(αi)
βi

while there is no condition imposed if

βi = 0. By the Chinese Remainder Theorem, imposing all the conditions together for α1, . . . , α` is the same
as imposing a condition for h modulo the product mα1 · · ·mα` . The result then follows from Remark 3.1. �

Let D ∈ Sd. In all the following, the notation (D) means the ideal generated by the polynomial D.

Lemma 3.3. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq such that none of the αi are conjugate
to each other, and βi ∈ Fqui for 1 ≤ i ≤ n such that β1, . . . , β` are not zero, and β`+1 = · · · = βn = 0. Fix
g ∈ Sd such that g(αi) = 0 for `+ 1 ≤ i ≤ n, and g(αi) 6= 0 for 1 ≤ i ≤ `. Then we have for any ε > 0∣∣∣∣{h ∈ Sd : (h, g) = 1,

g(αi)

h(αi)
= βi, 1 ≤ i ≤ n

}∣∣∣∣ = qd+1−
∑`
i=1 ui

∏
(P )|(g)

(1− |P |−1) +O
(
qεd
)
.

If g(αi) 6= 0 for some `+ 1 ≤ i ≤ n, or g(αi) = 0 for some 1 ≤ i ≤ ` then the above set is empty.

7



Proof. If g(αi) 6= 0 for some ` + 1 ≤ i ≤ n, or g(αi) = 0 for some 1 ≤ i ≤ `, then it is clear that the above
set is empty. We then suppose g(αi) = 0 for `+ 1 ≤ i ≤ n, and g(αi) 6= 0 for 1 ≤ i ≤ `.

By inclusion-exclusion and Lemma 3.2 we have∣∣∣∣{h ∈ Sd : (h, g) = 1,
g(αi)

h(αi)
= βi

}∣∣∣∣ =
∑

(D)|(g)

µ(D)
∑
h∈Sd

D|h, g(αi)
h(αi)

=βi,1≤i≤`

1

=
∑

(D)|(g)
degD≤d−

∑`
i=1

ui

µ(D)qd+1−degD−
∑`
i=1 ui +

∑
(D)|(g)

d−
∑`
i=1

u`<degD≤d

O(1)

= qd+1−
∑`
i=1 ui

∑
(D)|(g)

µ(D)q− degD +
∑

(D)|(g)
d−

∑`
i=1

u`<degD≤d

O(1)

= qd+1−
∑`
i=1 ui

∏
(P )|(g)

(1− |P |−1) +O
(
qεd
)

where µ is the Möbius function.
�

Definition 3.4. Let g ∈ Sd. Set

Agd = {h ∈ Sd : h square free and (h, g) = 1}.

Let α1, . . . , αn, β1, . . . , βn ∈ P1(Fqk). We define

Agd(α1, . . . , αn, β1, . . . , βn) = {h ∈ Agd : (βi,Xh− βi,Zg)(αi) = 0, 1 ≤ i ≤ n} .

Lemma 3.5. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq such that none of the αi are conjugate
to each other. Let βi ∈ Fqui for 1 ≤ i ≤ n such that β1, . . . , β` are not zero, and β`+1 = · · · = βn = 0. Fix
g ∈ Sd such that g(αi) = 0 for `+ 1 ≤ i ≤ n and g(αi) 6= 0 for 1 ≤ i ≤ `. Then

|Agd(α1, . . . , αn, β1, . . . , βn)| = qd+1−
∑`
i=1 ui

ζq(2)
∏`
i=1(1− q−2ui)

∏
(P )|(g)

(1 + |P |−1)−1 +O
(
q(1/2+ε)d

)
.

If g(αi) 6= 0 for some `+ 1 ≤ i ≤ n, or g(αi) = 0 for some 1 ≤ i ≤ ` then the above set is empty.

Proof. It is clear that Agd(α1, . . . , αn, β1, . . . , βn) is empty if the condition on the values g(αi) of the lemma
are not satisfied, and we then suppose that g(α1), . . . , g(α`) 6= 0, and g(α`+1) = · · · = g(αn) = 0.

By inclusion-exclusion,

|Agd(α1, . . . , αn, β1, . . . , βn)| =
∑′

(D):(D,g)=1
deg(D)≤d/2

µ(D)

∣∣∣∣{h1 ∈ Sd−2 deg(D) : (h1, g) = 1,
g(αi)

h1(αi)
= D2(αi)βi

}∣∣∣∣
= qd+1−

∑`
i=1 ui

∏
(P )|(g)

(1− |P |−1)
∑′

(D):(D,g)=1
deg(D)≤d/2

µ(D)|D|−2 +
∑′

(D):(D,g)=1
degD≤d/2

O
(
qεd
)

by Lemma 3.3, where we have written
∑′

(D)
for the sum over polynomials D such that D(αi) 6= 0 for

1 ≤ i ≤ `.
But ∑′

(D):(D,g)=1

µ(D)|D|−2s =
∏

(P ):P -g
P (αi)6=0,1≤i≤`

(1− |P |−2s) =
∏

(P ):P -gmα1
...mα`

(1− |P |−2s),

where we made use of the fact that (g,mαi) = 1 since g(αi) 6= 0. This can be rewritten as

1

ζq(2s)

∏
(P )|(gmα1

...mα` )

(1− |P |−2s)−1 =
1

ζq(2s)
∏`
i=1(1− q−2sui)

∏
(P )|(g)

(1− |P |−2s)−1.
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Therefore ∑′

(D):(D,g)=1
deg(D)≤d/2

µ(D)|D|−2 =
1

ζq(2)
∏`
i=1(1− q−2ui)

∏
(P )|(g)

(1− |P |−2)−1 +O
(
q−d/2

)
and

|Agd(α1, . . . , αn, β1, . . . , βn)| =
qd+1−

∑`
i=1 ui

ζq(2)
∏`
i=1(1− q−2ui)

∏
(P )|(g)

(1 + |P |−1)−1 +O
(
q(1/2+ε)d

)
.

�

Proposition 3.6. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq such that none of the αi are
conjugate to each other. Let βi ∈ Fqui for 1 ≤ i ≤ n. Then

|Ford
d (α1, . . . , αn, β1, . . . , βn)| = H(1)q2d+2−

∑n
i=1 ui

ζq(2)2
∏n
i=1(1 + q−ui − q−2ui)

+O
(
q(3/2+ε)d

)
,

where

H(1) =
∏
(P )

(
1 +

1

(|P |+ 1)(|P |2 − 1)

)
.

Proof. Denote by mαi the homogenized minimal polynomial of αi over Fq. We have

|Ford
d (α1, . . . , αn, β1, . . . , βn)| =

∑
g∈Sd

|Agd(α1, . . . , αn, β1, . . . , βn)|.

Assume without loss of generality that β1, . . . , β` are not zero, and β`+1 = · · · = βn = 0. By Lemma 3.5,
the above sum equals

|Ford
d (α1, . . . , αn, β1, . . . , βn)| =

∑
g∈Sd

g(αi) 6=0,1≤i≤`
g(αi)=0,`+1≤i≤n

 qd+1−
∑`
i=1 ui

ζq(2)
∏`
i=1(1− q−2ui)

∏
(P )|(g)

(1 + |P |−1)−1 +O
(
q(1/2+ε)d

)

=
qd+1−

∑n
i=1 ui

ζq(2)
∏`
i=1(1− q−2ui)

∑
g∈Sd

g(αi)6=0,1≤i≤`
g(αi)=0,`+1≤i≤n

∏
(P )|(g)

(1 + |P |−1)−1 +O
(
q(3/2+ε)d

)
.

Set

b(g) =
∏

(P )|(g)

(1 + |P |−1)−1

and

G(s) =
∑

(g) 6=0

b(g)

|g|s
.

Since b(g) is a multiplicative function, it follows that G(s) has an Euler product of the form

G(s) =
∏
(P )

( ∞∑
k=0

b(P k)|P |−ks
)

=
∏
(P )

(
1 +

b(P )|P |−s

1− |P |−s

)

=
∏
(P )

(
1 +

|P |−s

(1− |P |−s)(1 + |P |−1)

)
.

Thus

G(s) =
ζq(s)

ζq(2s)
H(s),
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where

H(s) =
∏
(P )

(
1− |P |

−s(1− |P |1−s − |P |−s)
(|P |+ 1)(1− |P |−2s)

)
,

which converges for Re(s) > 1/2. In addition, G(s) has a simple pole at s = 1 with residue

H(1)

ζq(2) log q
=

1

ζq(2) log q

∏
(P )

(
1 +

1

(|P |+ 1)(|P |2 − 1)

)
.

Define the additional Dirichlet series

G1(s) =
∑

(mαi
)-(g),1≤i≤`

(mαi
)|(g),`+1≤i≤n

b(g)

|g|s
=

∏
(P ) 6=(mαi ),1≤i≤n

(
1 +

|P |−s

(1− |P |−s)(1 + |P |−1)

)

×
∏

(P )=(mαi ),`+1≤i≤n

( ∞∑
k=1

b(P k)|P |−ks
)

= G(s)

n∏
i=1

(
1 +

q−uis

(1− q−uis)(1 + q−ui)

)−1 n∏
i=`+1

q−uis

(1− q−uis)(1 + q−ui)

= G(s)
∏̀
i=1

(1− q−uis)(1 + q−ui)

1 + q−ui − q−ui(s+1)

n∏
i=`+1

q−uis

1 + q−ui − q−ui(s+1)
.

Thus, G1(s) has a simple pole at s = 1 with residue

ρ =
H(1)

ζq(2) log q

∏̀
i=1

1− q−2ui

1 + q−ui − q−2ui

n∏
i=`+1

q−ui

1 + q−ui − q−2ui
,

and

G1(s)− ρ

s− 1
is holomorphic for Re(s) > 1/2. Then, using Theorem 17.1 of [Ros02] which is the function field version of
the Wiener–Ikehara Tauberian Theorem, we get that∑

(g),g∈Sd
(mαi

)-(g),1≤i≤`
(mαi

)|(g),`+1≤i≤n

b(g) =
H(1)qd+1

ζq(2)

∏̀
i=1

1− q−2ui

1 + q−ui − q−2ui

n∏
i=`+1

q−ui

1 + q−ui − q−2ui
+O

(
q(1/2+ε)d

)
.

Using the line above in the formula for |Ford
d (α1, . . . , αn, β1, . . . , βn)|, we get

|Ford
d (α1, . . . , αn, β1, . . . , βn)|

=
qd+1−

∑`
i=1 ui

ζq(2)
∏`
i=1(1− q−2ui)

H(1)qd+1

ζq(2)

∏̀
i=1

1− q−2ui

1 + q−ui − q−2ui

n∏
i=`+1

q−ui

1 + q−ui − q−2ui
+O

(
q(3/2+ε)d

)
=

H(1)q2d+2−
∑n
i=1 ui

ζq(2)2
∏n
i=1(1 + q−ui − q−2ui)

+O
(
q(3/2+ε)d

)
.

�

The previous result may be used to obtain the number of covers in the whole ordinary family by specializing
to n = 0.

Corollary 3.7.

|Ford
d | =

H(1)q2d+2

ζq(2)2
+O

(
q(3/2+ε)d

)
.

By combining Proposition 3.6 and Corollary 3.7, we obtain the following result.
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Proposition 3.8. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq such that none of the αi are
conjugate to each other. Let βi ∈ Fqui for 1 ≤ i ≤ n. Then

|Ford
d (α1, . . . , αn, β1, . . . , βn)|

|Ford
d |

=
q−

∑n
i=1 ui∏n

i=1(1 + q−ui − q−2ui)
+O

(
q(−1/2+ε)d

)
= q−

∑n
i=1 ui

(
1 +O

(
n∑
i=1

q−ui

))
+O

(
q(−1/2+ε)d

)
.

We finish this section by computing the expected number of points in an ordinary Artin-Schreier cover.
For this, we need to compute the case n = 1, i.e., |Ford

d (α, β)|.

Corollary 3.9. Fix α ∈ P1(Fqk) of degree u over Fq. Let β ∈ P1(Fqu). Then

|Ford
d (α, β)| =


H(1)q2d+2−u(1−q−u)
ζq(2)2(1+q−u−q−2u) +O

(
q(3/2+ε)d+u

)
β =∞,

H(1)q2d+2−u

ζq(2)2(1+q−u−q−2u) +O
(
q(3/2+ε)d

)
β ∈ Fqu .

Proof. The case of β ∈ Fqu is a simple consequence of Proposition 3.6. For β = [1 : 0], we have, by Lemma
2.3 that

|Ford
d (α,∞)| = |Ford

d | −
∑
β∈Fqu

|Ford
d (α, β)|

= |Ford
d | − qu|Ford

d (α, 0)|

=
H(1)q2d+2−u(1− q−u)

ζq(2)2(1 + q−u − q−2u)
+O

(
q(3/2+ε)d+u

)
.

�

By combining Proposition 3.8 and Corollaries 3.7 and 3.9, we obtain the following result.

Proposition 3.10. Fix α ∈ P1(Fqk) with degree u over Fq. Let β ∈ P1(Fqu). Then

|Ford
d (α, β)|
|Ford
d |

=


q−u(1−q−u)
1+q−u−q−2u +O

(
q(−1/2+ε)d+u

)
β =∞,

q−u

1+q−u−q−2u +O
(
q(−1/2+ε)d

)
β ∈ Fqu .

Lemma 3.11. Fix α ∈ P1(Fqk) of degree u over Fq. The expected number of Fqk -points in the fiber above α
is 

1 +O
(
q(−1/2+ε)d+u

)
if p - ku ,

1 + p−1
1+q−u−q−2u +O

(
q(−1/2+ε)d+u

)
if p | ku .

Proof. By Lemma 2.1 and Proposition 3.10, the expected number of Fqk -points in the fiber above α is

q−u(1− q−u)

1 + q−u − q−2u
+O

(
q(−1/2+ε)d+u

)
+

∑
β∈Fqu ,trk(β)=0

p

(
q−u

1 + q−u − q−2u
+O

(
q(−1/2+ε)d

))
.

If p - ku , then trk(β) = 0 iff tru(β) = 0 and there are qu

p points in Fqu with that property.

If p | ku , then trk(β) = k
u tru(β) = 0 for all β ∈ Fqu and therefore the expected number of points in the

fiber is

q−u(1− q−u)

1 + q−u − q−2u
+O

(
q(−1/2+ε)d+u

)
+

p

1 + q−u − q−2u
+O

(
q(−1/2+ε)d+u

)
.

�

For our main result, we recall that an ordinary Artin-Schreier cover has r+1 simple poles. This corresponds
to taking d = r + 1. We are ready to prove the first part of Theorem 1.1.
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Theorem 3.12. The expected number of Fqk -points on an ordinary Artin-Schreier cover defined over Fq is
qk + 1 +O

(
q(−1/2+ε)(r+1)+2k

)
p - k,

qk + 1 + p−1
1+q−1−q−2 +

∑
u| kp

p−1
1+q−u−q−2uπ(u)u+O

(
q(−1/2+ε)(r+1)+2k

)
p | k,

where π(u) is the number of monic irreducible polynomials in Fq[X] of degree u.

Proof. If p - k, the result follows by adding the result of Lemma 3.11 over all α ∈ P1(Fqk). If p | k we still

get the term qk + 1 and an additional term given by∑
u| kp

∑
α,degα=u

p− 1

1 + q−u − q−2u
=

p− 1

1 + q−1 − q−2
+
∑
u| kp

p− 1

1 + q−u − q−2u
π(u)u,

where the first term on the right hand side accounts for the case α =∞. �

Remark 3.13. When k = p, we obtain

qp + 1 +
(p− 1)(q + 1)

1 + q−1 − q−2
+O

(
q(−1/2+ε)(r+1)+2p

)
.

4. Full Space

In this case, we consider the family

F full
d = {(g(X,Z), h(X,Z)) : g(X,Z), h(X,Z) ∈ Sd, (g, h) = 1} .

Proposition 4.1. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un such that none of the αi are conjugate to
each other. Let βi ∈ Fqui for 1 ≤ i ≤ n. Then we have

|F full
d (α1, . . . , αn, β1, . . . , βn)| = q2d+2−

∑n
i=1 ui

ζq(2)

n∏
i=1

(
1

1 + q−ui

)
+O

(
q(1+ε)d

)
.

Proof. Assume without loss of generality that β1, . . . , β` are not zero, and β`+1 = · · · = βn = 0. We have,
by Lemma 3.3, that

|F full
d (α1, . . . , αn, β1, . . . , βn)| =

∑
g∈Sd

∣∣∣∣{h ∈ Sd : (h, g) = 1,
g(αi)

h(αi)
= βi, 1 ≤ i ≤ n

}∣∣∣∣
=

∑
g∈Sd

qd+1−
∑`
i=1 ui

∏
(P )|(g)

(1− |P |−1) +O
(
q(1+ε)d

)
.

We set
b(g) =

∏
(P )|(g)

(1− |P |−1),

and

G(s) =
∑

(g) 6=0

b(g)

|g|s
.

Since b(g) is a multiplicative function, it follows that G(s) has an Euler product of the form

G(s) =
∏
(P )

( ∞∑
k=0

b(P k)|P |−ks
)

=
∏
(P )

(
1 +

b(P )|P |−s

1− |P |−s

)

=
∏
(P )

(
1 +

(1− |P |−1)|P |−s

1− |P |−s

)
=
∏
(P )

(
1− |P |−1−s

1− |P |−s

)
.

Therefore

G(s) =
ζq(s)

ζq(1 + s)
,

is analytic for Re(s) > 0, except for a simple pole at s = 1 with residue (q−1)
ζq(2) log q .
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Now define the Dirichlet series

G1(s) =
∑

(mαi
)-(g),1≤i≤`

(mαi
)|(g),`+1≤i≤n

b(g)

|g|s
=

∏
(P ) 6=(mαi ),1≤i≤n

(
1− |P |−1−s

1− |P |−s

)

×
∏

(P )=(mαi ),`+1≤i≤n

( ∞∑
k=1

b(P k)|P |−ks
)

= G(s)

n∏
i=1

(
1− q−ui(1+s)

1− q−uis

)−1 n∏
i=`+1

(
q−uis(1− q−ui)

1− q−uis

)

= G(s)
∏̀
i=1

1− q−uis

1− q−ui(1+s)

n∏
i=`+1

q−uis(1− q−ui)
1− q−ui(1+s)

.

Thus G1(s) is analytic for Re(s) > 0, except for a simple pole at s = 1 with residue

1

ζq(2) log q

∏̀
i=1

1

1 + q−ui

n∏
i=`+1

q−ui

1 + q−ui
.

Then, using again Theorem 17.1 of [Ros02], we get that

|F full
d (α1, . . . , αn, β1, . . . , βn)| = qd+1−

∑`
i=1 ui

∑
(g),g∈Sd

(mαi
)-(g),1≤i≤`

(mαi
)|(g),`+1≤i≤n

b(g) +O
(
q(ε+1)d

)

=
q2d+2−

∑`
i=1 ui

ζq(2)

∏̀
i=1

(
1

1 + q−ui

) n∏
i=`+1

(
q−ui

1 + q−ui

)
+O

(
q(ε+1)d

)
.

�

We may now proceed to compute the number of covers in the whole family by setting n = 0 in the previous
result.

Corollary 4.2.

|F full
d | =

q2d+2

ζq(2)
+O

(
q(1+ε)d

)
.

By combining Proposition 4.1 and Corollary 4.2, we obtain the following result.

Proposition 4.3. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un such that none of the αi are conjugate to
each other. Let βi ∈ Fqui for 1 ≤ i ≤ n. Then we have

|F full
d (α1, . . . , αn, β1, . . . , βn)|

|F full
d |

=

n∏
i=1

(
q−ui

1 + q−ui

)
+O

(
q(ε−1)d

)
= q−

∑n
i=1 ui

(
1 +O

(
n∑
i=1

q−ui

))
+O

(
q(ε−1)d

)
.

We finish the section by computing the expected number of points in the full Artin-Schreier family.

Corollary 4.4. Fix α ∈ P1(Fqk) of degree u over Fq. Let β ∈ P1(Fqu). Then

|F full
d (α, β)| = q2d+2−u

ζq(2)(1 + q−u)
+


O
(
q(ε+1)d+u

)
β =∞,

O
(
q(ε+1)d

)
β ∈ Fqu .
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Proof. The case of β ∈ Fqu easily follows from Proposition 4.1. For β = [1 : 0], we have, by Lemma 2.3 that

|F full
d (α,∞)| = |F full

d | −
∑
β∈Fqu

|F full
d (α, β)|

= |F full
d | − qu|F full

d (α, 0)|

=
q2d+2−u

ζq(2)(1 + q−u)
+O

(
q(ε+1)d+u

)
.

�

We then obtain the following result.

Proposition 4.5. Fix α ∈ P1(Fqk) of degree u over Fq. Let β ∈ P1(Fqu). Then

|F full
d (α, β)|
|F full
d |

=
q−u

1 + q−u
+


O
(
q(ε−1)d+u

)
β =∞,

O
(
q(ε−1)d

)
β ∈ Fqu .

Lemma 4.6. Fix α ∈ P1(Fqk) of degree u over Fq. The expected number of Fqk -points in the fiber above α
is 

1 +O
(
q(ε−1)d+u

)
if p - ku ,

1 + p−1
1+q−u +O

(
q(ε−1)d+u

)
if p | ku .

Proof. By Lemma 2.1 and Proposition 4.5, we have

q−u

1 + q−u
+O

(
q(ε−1)d+u

)
+

∑
β∈Fqu ,trk(β)=0

p

(
q−u

1 + q−u
+O

(
q(ε−1)d

))
.

If p - ku , then trk(β) = 0 iff tru(β) = 0 and there are qu

p points in Fqu with that property.

If p | ku , then trk(β) = k
u tru(β) = 0 for all β ∈ Fqu and therefore the expected number of points in the

fiber is
q−u

1 + q−u
+O

(
q(ε−1)d+u

)
+

p

1 + q−u
+O

(
q(ε−1)d+u

)
.

�

We are ready to prove Theorem 1.1 (2).

Theorem 4.7. The expected number of Fqk -points on an Artin-Schreier cover in ASg defined over Fq is
qk + 1 +O

(
q(ε−1)d+2k

)
p - k,

qk + 1 + (p− 1)qk/p + p−1
1+q−1 − (p− 1)

∑
u| kp

1
1+quπ(u)u+O

(
q(ε−1)d+2k

)
p | k.

Proof. The result for p - k follows from Lemma 4.6. If p | k we still get the term qk + 1 and an additional
term given by ∑

u| kp

∑
α,degα=u

p− 1

1 + q−u
=

p− 1

1 + q−1
+ (p− 1)

∑
u| kp

qu

1 + qu
π(u)u

=
p− 1

1 + q−1
+ (p− 1)qk/p − (p− 1)

∑
u| kp

1

1 + qu
π(u)u.

�

Remark 4.8. When k = p, we obtain

qp + 1 + (p− 1)q +O
(
q(ε−1)d+2p

)
.
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5. Prescribed factorization type

Recall that

Fvd = {(g(X,Z), h(X,Z)) : g(X,Z), h(X,Z) ∈ Sd, (g, h) = 1, h has factorization type v},

where v = (r
d1,1
1 , . . . , r

d1,`1
1 , . . . , r

dm,1
m , . . . , r

dm,`m
m ) and

h = P
d1,1
1,1 · · ·P

d1,`1
1,`1

· · ·P dm,1m,1 · · ·P
dm,`m
m,`m

,

where the Pi,j are distinct irreducible polynomials of degree ri and ri 6= rj if i 6= j. The degree of h is then

given by d =
∑m
i=1 ri

∑`i
j=1 di,j .

We will first compute the expected number of points for this family. We need the following result.

Lemma 5.1. Fix a polynomial h ∈ Sd. Then, if h 6= 0

|{g ∈ Sd : (g, h) = 1}| = qd+1
∏

(P )|(h)

(1− |P |−1).

We remark that this Lemma follows directly from the proof of Lemma 3.3.

Proposition 5.2. Fix α ∈ P1(Fqk) of degrees u over Fq. Let β ∈ P1(Fqu). Then, if u ≤ d,

|Fvd (α, β)|
|Fvd |

=



q−u deg(α) = u 6= ri, β 6=∞,

0 deg(α) = u 6= ri, β =∞,

q−ri (π(ri)−`i)
π(ri)

deg(α) = ri, β 6=∞,

`i
π(ri)

deg(α) = ri, β =∞.

If u > d the above quotient is O(q−d).

Proof. We first consider the size of the whole family. By Lemma 5.1 we have

|Fvd | =
∑

degPi,j=ri,all different

|{g ∈ Sd : (g, h) = 1}|

= qd+1
m∏
i=1

(1− q−ri)`i
∑

degPi,j=ri,all different

1.(5)

If deg(α) = u 6= ri, and β ∈ Fqu , then by Lemma 2.3 it suffices to find |Fvd (α, β)| for β = 0. If this is the
case, then we need g(α) = 0, or that mα | g.

|Fvd (α, β)| =
∑

degPi,j=ri,all different

|{g ∈ Sd : (g, h) = 1,mα | g}|

= qd+1−u
m∏
i=1

(1− q−ri)`i
∑

degPi,j=ri,all different

1.

If deg(α) = u 6= ri, and β =∞, we get a contradiction and thus

|Fvd (α,∞)| = 0.

Now assume that deg(α) = u = ri0 , for some i0 and that β ∈ Fqu . By Lemma 2.3 we can again assume
that β = 0. In this case we need to impose the condition that h(α) 6= 0. Therefore,

|Fvd (α, β)| = qd+1−ri0
m∏
i=1

(1− q−ri)`i
∑

degPi,j=ri,Pi0,j 6=mα,all different

1.

15



Finally, if deg(α) = ri0 for some i0 and β =∞, we need that h(α) = 0 and g(α) 6= 0.

|Fvd (α,∞)| = qd+1
m∏
i=1

(1− q−ri)`i
∑

degPi,j=ri,∃Pi0,j=mα,all different

1.

The result now follows from the identity

|{degPi,j = ri, all different}| =
m∏
i=1

(
π(ri)

`i

)
.

�

We are now ready to prove the main result of this section.

Theorem 5.3. The expected number of Fqk -points on an Artin-Schreier cover with poles given by the fac-
torization type v defined over Fq is

qk + 1 p - k,

qk + 1 + (p− 1)qk/p + (p− 1)
(

1−
∑
ri|k `iri

)
p | k.

Proof. We can assume that p - di. This is because the Fq-isomorphisms (x, y) 7→ (x, y + axk) allow us to
eliminate all the terms in h such that x appears to a power multiple of p.

By Lemma 2.1, the final count becomes∑
α∈P1(F

qk
)

|Fvd (α,∞)|
|Fvd |

+
∑

α∈P1(F
qk

)

∑
β∈F

qdeg(α) ,trk(β)=0

p
|Fvd (α, β)|
|Fvd |

=
∑
ri|k

`i
π(ri)

∑
α∈P1(F

qk
),deg(α)=ri

1 +
∑

α∈P1(F
qk

)

∑
β∈F

qdeg(α) ,trk(β)=0

pq− deg(α)

−
∑
ri|k

`i
π(ri)

∑
α∈P1(F

qk
),deg(α)=ri

∑
β∈Fqri ,trk(β)=0

pq−ri .

If p - k, then trk(β) = 0 if and only if tru(β) = 0 and there are qu

p in Fqu with that property. Thus we

obtain qk + 1. If p | k, then since p - ri, if ri | k then p | kri and trk(β) = 0 for β ∈ Fqri . The final count then
becomes

∑
α∈P1(F

qk
)

∑
β∈F

qdeg(α) ,trk(β)=0

pq− deg(α) +
∑
ri|k

`i
π(ri)

∑
α∈P1(Fqri ),degα=ri

1−
∑

β∈Fqri ,trk(β)=0

pq−ri


= qk + 1 + (p− 1)(qk/p + 1)−

∑
ri|k

`i
π(ri)

∑
α∈P1(Fqri ),degα=ri

(p− 1)

= qk + 1 + (p− 1)qk/p + (p− 1)

1−
∑
ri|k

`iri

 .

�

Now suppose that we take the p-rank 0 family. We recall that this corresponds to v = (1d). A simple
application of Theorem 5.3 yields the following.

16



Theorem 5.4. The expected number of Fqk -points on a p-rank 0 Artin-Schreier cover in ASg,0 defined over
Fq is 

qk + 1 p - k,

qk + 1 + (p− 1)qk/p p | k.

This recovers the result from [Ent12].
Finally we consider the family of curves with p-rank equal to p − 1. It corresponds to v = (1d1 , 1d2).

Again, by applying Theorem 5.3 we get the third part of Theorem 1.1.

Theorem 5.5. The expected number of Fqk -points on a p-rank p Artin-Schreier cover in ASg,p−1 defined
over Fq is 

qk + 1 p - k,

qk + 1 + (p− 1)(qk/p − 1) p | k.

We now proceed to the case where we fix several values, which will be needed for the computation of the
moments.

Proposition 5.6. Let α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq such that none of the αi are
conjugate to each other. Let βi ∈ Fqui for 1 ≤ i ≤ n. Then

|Fvd (α1, . . . , αn, β1, . . . , βn)|
|Fvd |

=

m∏
i=1

(1− τ(ri, `i;u1, . . . , un))q−(u1+···+un) +O(q(ε−1)d),

where 0 ≤ τ(ri, `i;u1, . . . , un) ≤ 1 is a constant that depends on the number of uj’s that are equal to ri and
is equal to zero if uj 6= ri for any j.

Proof. Without loss of generality we can assume that β1, . . . , β` are not zero and that β`+1 = · · · = βn = 0.
We have that

|Fvd (α1, . . . , αn, β1, . . . , βn)|

=
∑

deg Pi,j=ri,all different
Pi,j 6=mα

∣∣∣∣∣
{
g1 ∈ Sd−∑n

j=`+1 uj
: (g1, h) = 1,

g1(αi)
∏n
j=`+1mαj (αi)

h(αi)
= βi, 1 ≤ i ≤ `

}∣∣∣∣∣ .(6)

Notice that β−1
i ∈ F∗qui for 1 ≤ i ≤ `. By Lemma 3.3,∣∣∣∣∣

{
g1 ∈ Sd−∑n

j=`+1 uj
: (g1, h) = 1,

h(αi)

g1(αi)
∏n
j=`+1mαj (αi)

= β−1
i 1 ≤ i ≤ `

}∣∣∣∣∣
= qd+1−

∑n
i=1 ui

∏
(P )|(h)

(1− |P |−1) +O
(
qεd
)

= qd+1−
∑n
i=1 ui

m∏
j=1

(1− q−rj )`j +O
(
qεd
)
.

On the other hand, |{degPi,j = ri, all different, Pi,j 6= mα}| is a product of binomials of the form(
π(ri)− si

`i

)
,

where si corresponds to the number of uj ’s that equal the particular ri.
This gives that

|{degPi,j = ri, all different, Pi,j 6= mα}|
|{degPi,j = ri, all different}|
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is a product of terms of the form

(1− τ(ri, `i;u1, . . . , un)) =

(
π(ri)−si

`i

)(
π(ri)
`i

) =
(π(ri)− `i)(π(ri)− `i − 1) · · · (π(ri)− `i − si + 1)

π(ri)(π(ri)− 1) · · · (π(ri)− si + 1)
.

By dividing equation (6) by equation (5), we get

|Fvd (α1, . . . , αn, β1, . . . , βn)|
|Fvd |

= q−
∑n
i=1 ui

m∏
i=1

(1− τ(ri, `i;u1, . . . , un)) +O(q(ε−1)d),

where the constant satisfies the desired properties. �

6. Beurling–Selberg functions

In this section we start the development of the tools needed to prove Theorem 1.2. By the functional
equation, the conjugate of a root of ZCf (u) is also a root so we can restrict to considering symmetric intervals.
Let 0 < β < 1 and set I = [−β/2, β/2] ⊂ [−1/2, 1/2). Our goal is to estimate the quantity

NI(f, ψ) := #

{
1 ≤ j ≤ 2g

p− 1
: θj(f, ψ) ∈ I

}
=

2g/(p−1)∑
j=1

χI(θj(f, ψ)),

where χI denotes the characteristic function of I. We are going to approximate χI with Beurling–Selberg
polynomials I±K .

In what follows, we use the standard notation e(x) := e2πix. Let K be a positive integer, and let
h(θ) =

∑
|k|≤K ake(kθ) be a trigonometric polynomial. Then, the coefficients ak are given by the Fourier

transform

ak = ĥ(k) =

∫ 1/2

−1/2

h(θ)e(−kθ)dθ.

Here is a list of a series of useful properties of the Beurling–Selberg polynomials (see [Mon94], ch 1.2)
that will be used in this paper.

(a) The I±K are trigonometric polynomials of degree ≤ K, i.e.,

I±K(x) =
∑
|k|≤K

Î±K(k)e(kx).

(b) The Beurling–Selberg polynomials yield upper and lower bounds for the characteristic function:

I−K ≤ χI ≤ I
+
K .

(c) The integral of Beurling–Selberg polynomials approximates the length of the interval:∫ 1/2

−1/2

I±K(x)dx =

∫ 1/2

−1/2

χI(x)dx± 1

K + 1
= |I| ± 1

K + 1
.

(d) The I±K are even (because the interval I is symmetric about the origin). Therefore the Fourier

coefficients are also even, i.e. Î±K(−k) = Î±K(k) for |k| ≤ K.
(e) The nonzero Fourier coefficients of the Beurling–Selberg polynomials approximate those of the char-

acteristic function:

|Î±K(k)− χ̂I(k)| ≤ 1

K + 1
=⇒ Î±K(k) =

sin(πk|I|)
πk

+O

(
1

K + 1

)
, k ≥ 1.

Therefore we obtain the following bound:

|Î±K(k)| ≤ 1

K + 1
+ min

{
|I|, π
|k|

}
, 0 < |k| ≤ K.

We now list some results that will be useful in future sections.
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Proposition 6.1. (Proposition 4.1, [FR10]) For K ≥ 1 such that K|I| > 1, we have∑
k≥1

Î±K(2k) = O(1),

∑
k≥1

Î±K(k)2k =
1

2π2
log(K|I|) +O(1),

∑
k≥1

Î+
K(k)Î−K(k)k =

1

2π2
log(K|I|) +O(1).

We remark that for a given K the above sums are actually finite, since the Beurling–Selberg polynomials
I±K have degree at most K. We will also need the following estimates.

Proposition 6.2. (Proposition 5.2, [BDFLS]) For α1, . . . , αr, γ1, . . . , γr > 0, and β1, . . . , βr ∈ R, we have,∑
k1,...,kr≥1

Î±K(k1)
α1

. . . Î±K(kr)
αr
kβ1

1 . . . kβrr q
−γ1k1−···−γrkr = O(1).

For α1, α2, γ > 0, and β ∈ R, ∑
k≥1

Î±K(k)
α1

Î±K(2k)
α2

kβq−γk = O(1).

7. Set-up for the distribution of the zeroes

We state here an explicit formula that will be used to relate L(u, f, ψ) to the Beurling–Selberg polynomials.
Recall that 2g = (p− 1)(∆− 1).

Lemma 7.1. ([BDFLS], Lemma 3.1) Let h(θ) =
∑
|k|≤K ĥ(k)e(kθ) be a trigonometric polynomial. Let

θj(f, ψ) be the eigenangles of the L-function L(u, f, ψ). Then we have

(7)

∆−1∑
j=1

h(θj(f, ψ)) = (∆− 1)ĥ(0)−
K∑
k=1

ĥ(k)Sk(f, ψ) + ĥ(−k)Sk(f, ψ)

qk/2
,

where

Sk(f, ψ) =
∑

x∈P1(F
qk

)

f(x)6=∞

ψ(trk(f(x))).

We use the Beurling–Selberg approximation of the characteristic function of the interval I to rewrite
NI(f, ψ) and NI(Cf ) where f varies over one of the families Fd. By Property (b) of the Beurling–Selberg
polynomials, we have

∆−1∑
j=1

I−K(θj(f, ψ)) ≤ NI(f, ψ) ≤
∆−1∑
j=1

I+
K(θj(f, ψ)),

and using the explicit formula of Lemma 7.1 and Property (c), we have

∆−1∑
j=1

I±K(θj(f, ψ)) = (∆− 1)|I| − S±(K, f, ψ)± ∆− 1

K + 1

where

S±(K, f, ψ) :=

K∑
k=1

Î±K(k)Sk(f, ψ) + Î±K(−k)Sk(f, ψ̄)

qk/2
.(8)

This gives

−S−(K, f, ψ)− ∆− 1

K + 1
≤ NI(f, ψ)− (∆− 1)|I| ≤ −S+(K, f, ψ) +

∆− 1

K + 1
,(9)
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and

−
p−1∑
h=1

S−(K, f, ψh)− 2g

K + 1
≤ NI(Cf )− 2g|I| ≤ −

p−1∑
h=1

S+(K, f, ψh) +
2g

K + 1
.(10)

In the next section we are going to compute the moments

1

|Fd|
∑
f∈Fd

S±(K, f, ψh)n and
1

|Fd|
∑
f∈Fd

S±(K,Cf )n

where

S±(K,Cf )n =

p−1∑
h1,...,hn=1

S±(K, f, ψh1) . . . S±(K, f, ψhn).(11)

We will show that they approach the Gaussian moments when properly normalized. We will then use this
result to show that

NI(Cf )− 2g|I|√
2(p−1)
π2 log(g|I|)

converges to a normal distribution as g→∞ since it converges in mean square to

S±(K,Cf )√
2(p−1)
π2 log(g|I|)

.

8. Moments

Our goal is to compute the moments of S±(K,Cf ) when f varies in any of the families of curves Ford
d ,

F full
d , and Fvd .

Definition 8.1. Let

EFd(u) =



(1 + q−u − q−2u)−1 Fd = Ford
d ,

(1 + q−u)−1 Fd = F full
d ,

π(ri)− `i
π(ri)

Fd = Fvd and u = ri for some i,

1 Fd = Fvd and u 6= ri for any i.

More generally, we have

EFd(u1, . . . , un) =


n∏
i=1

EFd(ui) Fd = Ford
d ,F full

d ,

m∏
i=1

(1− τ(ri, `i;u1, . . . , un)) Fd = Fvd ,

where τ(ri, `i;u1, . . . , un) is as defined in Proposition 5.6.

Remark 8.2. Let Fd be any one of the families considered. Then

EFd(u) = 1 +O
(
uq−u

)
.

The estimate can be improved to EFd(u) = 1+O (q−u) for Ford
d and F full

d . In the case of Fvd , we are assuming

that the `i are fixed constants and using the estimate π(m) = qm

m +O
(
qm/2

m

)
(see [Ros02], Theorem 2.2).

In addition, we have that

EFd(u1, . . . , un)� 1.

From now on we will use the notation α1 ∼ α2 to indicate that α1 and α2 are Galois conjugate, and
α1 6∼ α2 for the opposite statement.

Then, for all the families under consideration we have the following result.
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Lemma 8.3. Let α ∈ P1(Fqk) of degree u over Fq. Let β ∈ Fqu . Let Fd be any of the families under
consideration. Then

|Fd(α, β)|
|Fd|

=
|Fd(α, 0)|
|Fd|

=
EFd(u)

qu
+O

(
q−d/2

)
.(12)

Let α1, α2 ∈ P1(Fqk) of degrees u1, u2 respectively over Fq. Let β1 ∈ Fqu1 , β2 ∈ Fqu2 . Let Fd be any of the
families under consideration. Then, if α1 6∼ α2,

|Fd(α1, α2, β1, β2)|
|Fd|

=
EFd(u1, u2)

qu1+u2
+O

(
q−d/2

)
,(13)

where EFd(u1, u2) does not depend on the values of β1, β2.
If α1 ∼ α2, and β1 ∼ β2 by the same automorphism,

|Fd(α1, α2, β1, β2)|
|Fd|

=
|Fd(α1, β1)|
|Fd|

=
EFd(u1)

qu1
+O

(
q−d/2

)
.(14)

Otherwise, we get zero.
Let α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq and let βi ∈ Fqui for 1 ≤ i ≤ n.
If none of the αi are conjugate to each other. Then

|Fd(α1, . . . , αn, β1, . . . βn)|
|Fd|

=
EFd(u1, . . . , un)

qu1+···+un
+O(q−d/2),(15)

where EFd(u1, . . . , un) does not depend on the values of β1, . . . , βn.
If some of the αi’s are conjugate to others, then we get zero, unless the corresponding βi’s are conjugate

by the same automorphisms and in that case we get formula (15), where the ui’s correspond to the degrees
for each of the different conjugacy classes of the αi’s.

Proof. This follows from Propositions 3.8, 3.10, 4.3, 4.5, 5.2 and 5.6. �

We recall that for a family F , a function G depending on f , and a vector α = (α1, . . . , αn), we have the
notation

〈G(f)〉F :=
1

|F|
∑
f∈F

G(f),

〈G(f)〉F,α :=
1

|F|
∑
f∈F

f(αi)6=∞,1≤i≤n

G(f).

The main idea in the computations of moments is that if we sum the value of a non-trivial additive
character ψ evaluated at a linear combination of the traces trui(βi) over all βi ∈ Fqui for 1 ≤ i ≤ s, then the
sum will be 0 unless each coefficient is divisible by p.

Lemma 8.4. Let m1, . . . ,ms ∈ Z, and ψ a non-trivial additive character of Fp. Then,

∑
βi∈Fqui 1≤i≤s

ψ(m1 tru1
(β1) + · · ·+ms trus(βs)) =


qu1+···+us p | mi for 1 ≤ i ≤ s,

0 otherwise.

8.1. First moment.

Lemma 8.5. Let h be an integer such that p - h, e ∈ {−1, 1}, and k > 0. Let α ∈ Fqk of degree u over Fq.
Let Fd be any of the families under consideration. We have,

〈ψ(eh trk f(α))〉Fd,α =


EFd(u) +O

(
qu−d/2

)
p | ku ,

O
(
qu−d/2

)
otherwise.
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Proof. By reversing the order of summation, we obtain

〈ψ(eh trk f(α))〉Fd,α =
∑
β∈Fqu

ψ(eh trk(β))
|Fd(α, β)|
|Fd|

.

We now apply Lemma 8.3 in order to obtain

EFd(u)

qu

∑
β∈Fqu

ψ

(
ehk

u
tru(β)

)
+O

(
qu−d/2

)
.

Lemma 8.4 implies that the main term is zero unless p | ku . This completes the proof of the statement. �

For positive integers k, h with p - h and e ∈ {−1, 1}, set

Mk,e,h
1,d :=

〈
q−k/2

∑
α∈F

qk

f(α)6=∞

ψ(eh trk f(α))

〉
Fd

= q−k/2
∑
α∈F

qk

〈ψ(eh trk f(α))〉Fd,α .

Lemma 8.5 has the following consequence.

Theorem 8.6. Let h be an integer such that p - h and let Fd be any of the families under consideration.
Then

Mk,e,h
1,d = ep,k

(
EFd (k/p) q−(1/2−1/p)k +O

(
q−(1/2−1/2p)k

))
+O

(
q3k/2−d/2

)
= O

(
q−(1/2−1/p)k + q3k/2−d/2

)
,

where

ep,k =

{
0 p - k,
1 p | k.

Proof. By Lemma 8.5, we have that

Mk,e,h
1,d = q−k/2

∑
u,pu|k

α∈F
qk
,deg(α)=u

EFd(u) + q−k/2
∑
α∈F

qk

O(qdeg(α)−d/2)

=
ep,k
qk/2

∑
m,pm|k

EFd(m)π(m)m+O
(
q3k/2−d/2

)
.

Finally, if p | k, the estimates from Remark 8.2 yield∑
m,pm|k

EFd(m)π(m)m = EFd (k/p) qk/p +O
(
qk/2p

)
.

�

Notice that changing h allows us to vary the character from ψ to ψh. This will be useful later.

Theorem 8.7. Let h be an integer such that p - h and let Fd be any of the families under consideration.
Then for any K with max{1, 1/|I|} < K < d/3,〈

S±(K, f, ψh)
〉
Fd

= O(1).
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Proof. We have that

〈
S±(K, f, ψh)

〉
Fd

=

K∑
k=1

Î±K(k)
〈
Sk(f, ψh)

〉
Fd

+ Î±K(−k)
〈
Sk(f, ψ̄h)

〉
Fd

qk/2

=

K∑
k=1

Î±K(k)Mk,1,h
1,d + Î±K(−k)Mk,−1,h

1,d

=

K∑
k=1

Î±K(k)O
(
q−(1/2−1/p)k + q3k/2−d/2

)
.

and the result follows from Proposition 6.2. �

Theorem 8.8. Let Fd be any of the families under consideration. Then,

〈NI(f, ψ)〉Fd =
1

|Fd|
∑
f∈Fd

NI(f, ψ) = (∆− 1)|I|+O (1)

〈NI(Cf )〉Fd =
1

|Fd|
∑
f∈Fd

NI(Cf ) = 2g|I|+O (1) .

Proof. This follows from Theorem 8.7 and equations (9) and (10) using K = εd for any 0 < ε < 1/3. �

8.2. Second moment.

Lemma 8.9. Let h1, h2 be integers such that p - h1h2, e1, e2 ∈ {−1, 1} and k1, k2 > 0. Let α1 ∈ Fqk1 ,
α2 ∈ Fqk2 of degrees u1, u2 respectively over Fq. For any of the families under consideration, we have,

〈ψ(e1h1 trk1 f(α1) + e2h2 trk2 f(α2))〉Fd,(α1,α2)

=


EFd(u1) +O

(
qu1−d/2

)
α1 ∼ α2, p | e1h1k1 + e2h2k2

u1
,

O
(

1 + qu1+u2−d/2
)

α1 6∼ α2, p |
(
k1
u1
, k2u2

)
,

O
(
qu1+u2−d/2

)
otherwise.

Proof. Reversing the order of summation, we write

〈ψ(e1h1 trk1 f(α1) + e2h2 trk2 f(α2))〉Fd,(α1,α2)

=
∑

β1∈Fqu1 ,β2∈Fqu2

ψ(e1h1 trk1 β1 + e2h2 trk2 β2)
|Fd(α1, α2, β1, β2)|

|Fd|
.(16)

Assume that α1 6∼ α2. By Lemma 8.3 we can write (16) as

EFd(u1, u2)

qu1+u2

∑
β1∈Fqu1 ,β2∈Fqu2

ψ

(
e1h1k1

u1
tru1

β1 +
e2h2k2

u2
tru2

β2

)
+O

(
qu1+u2−d/2

)
.

Then Lemma 8.4 implies that the sum is zero unless p | k1u1
and p | k2u2

.

Now assume that α1 ∼ α2. Then f(α1) ∼ f(α2) and tru1
f(α1) = tru1

f(α2). By Lemma 8.3 we can write
(16) as

EFd(u1)

qu1

∑
β1∈Fqu1

ψ

(
e1h1k1 + e2h2k2

u1
tru1 β1

)
+O

(
qu1−d/2

)
.

Then Lemma 8.4 implies that the sum is zero unless p | e1h1k1+e2h2k2
u1

.
�
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Lemma 8.10. Let h1, h2 be integers such that p - h1h2, e1, e2 ∈ {−1, 1} and k1, k2 > 0, k1 ≥ k2. Let Fd be
any of the families under consideration. Then,

∑
m|(k1,k2)
mp-k1,k2

mp|(e1h1k1+e2h2k2)

EFd(m)π(m)m2 =


EFd(k1)k1q

k1 +O
(
k1q

k1/2
)

k1 = k2, p | (e1h1 + e2h2),

0 k1 = k2, p - (e1h1 + e2h2),

O
(
k1q

k1/2
)

k1 = 2k2,

O
(
k1q

k1/3
)

k1 6= k2, 2k2.

Proof. For the first case when k1 = k2, the conditions on the summation indices become m | k1, mp - k1,
and mp | (e1h1 + e2h2)k1, a contradiction unless p | (e1h1 + e2h2). In this case, one gets∑

m|k1
mp-k1

EFd(m)π(m)m2 = EFd(k1)k1q
k1 +O

(
k1q

k1/2
)
,

where we have used the estimates for π(m) and EFd(m) discussed in Remark 8.2.
On the other hand, when k1 = 2k2, one gets∑

m|k2
mp-k2

mp|(2e1h1+e2h2)k2

EFd(m)π(m)m2 = O
(
k1q

k1/2
)
.

Finally, if k1 > k2 but k1 6= 2k2, we have (k1, k2) ≤ k1/3 and∑
m|(k1,k2)
mp-k1,k2

mp|(e1h1k1+e2h2k2)

EFd(m)π(m)m2 = O
(
k1q

k1/3
)
.

This completes the proof. �

For positive integers k1, k2, h1, h2 with p - h1h2 and e1, e2 ∈ {−1, 1}, let

M
(k1,k2),(e1,e2),(h1,h2)
2,d :=

〈
q−(k1+k2)/2

∑
α1∈Fqk1

,α2∈Fqk2
f(α1)6=∞,f(α2) 6=∞

ψ(e1h1 trk1 f(α1) + e2h2 trk2 f(α2))

〉
Fd

= q−(k1+k2)/2
∑

α1∈Fqk1
α2∈Fqk2

〈ψ(e1h1 trk1 f(α1) + e2h2 trk2 f(α2))〉Fd,(α1,α2) .

Using Lemma 8.10, we can prove the following analogue of Theorem 8 in [Ent12].

Theorem 8.11. Let 0 < h1, h2 ≤ (p− 1)/2, e1, e2 ∈ {−1, 1}, k1 ≥ k2 > 0, and let Fd be any of the families
under consideration. Then

M
(k1,k2),(e1,e2),(h1,h2)
2,d =

{
δk1,k2

(
EFd(k1)k1 +O

(
k1q
−k1/2 + k1q

(k1−d/2)
))

e1 = −e2, h1 = h2,

0 otherwise,

+δk1,2k2O
(
k1q
−k2/2 + k1q

k2/2−d/2
)

+O
(
k1q
−k2/2−k1/6 + k1q

k1/6−k2/2−d/2
)

+O
(
q(1/p−1/2)(k1+k2) + q3(k1+k2)/2−d/2

)
where

δk1,k2 =

{
1, k1 = k2,

0, k1 6= k2.
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Proof. From Lemma 8.9, we have

M
(k1,k2),(e1,e2),(h1,h2)
2,d =

ep,e1h1k1+e2h2k2

q(k1+k2)/2

∑
m|(k1,k2)
mp-k1,k2

mp|(e1h1k1+e2h2k2)

π(m)m2
(
EFd(m) +O(qm−d/2)

)

+O

 ep,k1ep,k2
q(k1+k2)/2

∑
degα1=u1,degα2=u2

p| k1
u1

,p| k2
u2

(
1 + qu1+u2−d/2

)
+O

 1

q(k1+k2)/2

∑
degα1=u1,degα2=u2

u1|k1,u2|k2

qu1+u2−d/2

 .

It is easy to see that the last two terms are

O
(
q(1/p−1/2)(k1+k2) + q3(k1+k2)/2−d/2

)
.

For the first term, we use Lemma 8.10. As a final observation, the condition p | e1h1 + e2h2 translates
into h1 = h2 and e1 = −e2 because of the restriction on the possible values for h1, h2. This concludes the
proof of the theorem. �

Using Lemma 8.10, we can prove the following result which will also be used in the general moments.

Proposition 8.12. Let h1, h2 be integers such that p - h1h2, e1, e2 ∈ {−1, 1} and k1, k2 > 0. Let Fd be any
of the families under consideration. Then,

K∑
k1,k2=1

Î±K(e1k1)Î±K(e2k2)q−(k1+k2)/2
∑

m|(k1,k2)
mp-k1,k2

mp|(e1h1k1+e2h2k2)

EFd(m)π(m)m2

=


1

2π2
log (K|I|) +O(1) p | (e1h1 + e2h2),

O(1) otherwise.

Proof. Using Lemma 8.10, we have the sum is

ep,e1h1+e2h2

K∑
k1=1

Î±K(k1)Î±K(−k1)
(
EFd(k1)k1 +O

(
k1q
−k1/2

))
+O

 K∑
k1=1

k1q
−k1/4 +

K∑
k1,k2=1

k1q
−k1/6q−k2/2


= ep,e1h1+e2h2

K∑
k1=1

Î±K(k1)Î±K(−k1)EFd(k1)k1 +O(1).

Now the estimates from Remark 8.2 and Proposition 6.1 yield

K∑
k1=1

Î±K(k1)Î±K(−k1)EFd(k1)k1 =

K∑
k1=1

Î±K(k1)Î±K(−k1)k1 +O

(
K∑

k1=1

k2
1q
−k1

)

=
1

2π2
log(K|I|) +O(1),

which finishes the proof of the statement.
�

Finally, we are able to compute the covariances.
25



Theorem 8.13. Let 0 < h1, h2 ≤ (p − 1)/2, and let Fd be any of the families under consideration. Then
for any K with 1/|I| < K < d/6,

〈
S±(K, f, ψh1)S±(K, f, ψh2)

〉
Fd

=
〈
S±(K, f, ψh1)S∓(K, f, ψh2)

〉
Fd

=


1

π2
log(K|I|) +O (1) h1 = h2,

O (1) h1 6= h2.

Proof. By definition,〈
S±(K, f, ψh1)S±(K, f, ψh2)

〉
Fd

=

K∑
k1,k2=1

Î±K(k1)Î±K(k2)M
(k1,k2),(1,1),(h1,h2)
2,d + Î±K(k1)Î±K(−k2)M

(k1,k2),(1,−1),(h1,h2)
2,d

+Î±K(−k1)Î±K(k2)M
(k1,k2),(−1,1),(h1,h2)
2,d + Î±K(−k1)Î±K(−k2)M

(k1,k2),(−1,−1),(h1,h2)
2,d .

Using Theorem 8.11 to replace the terms above, we first remark that the contribution of the last two error
terms from Theorem 8.11 to the sum is

�
K∑

k1,k2=1

k1q
−k2/2−k1/6 + k1q

k1/6−k2/2−d/2 + q(1/p−1/2)(k1+k2) + q3(k1+k2)/2−d/2 � 1

provided that d > 6K.
Similarly, the contribution of the error terms for k1 = k2 and k1 = 2k1 is bounded by

�
K∑
k=1

kq−k/2 + kqk−d/2 � 1

provided that d > 2K. Finally, the main term comes from summing EFd(k1)k1 when k1 = k2, and this
occurs only when h1 = h2 and {e1, e2} = {1,−1}. Proceeding as in the proof of Proposition 8.12, we then
get that

〈
S±(K, f, ψh1)2

〉
Fd

= 2

K∑
k1=1

Î±K(k1)Î±K(−k1)k1EFd(k1) +O(1)

=
1

π2
log(K|I|) +O(1).

The proof for
〈
S±(K, f, ψh1)S∓(K, f, ψh2)

〉
Fd

follows exactly along the same lines. �

Corollary 8.14. For any K with 1/|I| < K < d/6,

〈
S±(K,Cf )2

〉
Fd

=
〈
S+(K,Cf )S−(K,Cf )

〉
Fd

=
2(p− 1)

π2
log(K|I|) +O(1).

Proof. First we note that

〈
S±(K,Cf )2

〉
Fd

=

p−1∑
h1,h2=1

〈
S±(K, f, ψh1)S±(K, f, ψh2)

〉
Fd
.

Notice that by Theorem 8.13, the mixed average contributes 1
π2 log(K|I|)+O(1) for each term where h1 = h2

or h1 = p− h2. The proof for 〈S+(K,Cf )S−(K,Cf )〉Fd is identical. �
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8.3. General moments. Let n, k1, . . . , kn be positive integers, let e1, . . . , en take values±1, and let h1, . . . , hn
be integers such that p - hi, 1 ≤ i ≤ n. Let k = (k1, . . . , kn), e = (e1, . . . , en), and h = (h1, . . . , hn). Let
αi ∈ Fqki , 1 ≤ i ≤ n, and let α = (α1, . . . , αn). Let Fd be any of the families under consideration. Then, we
define

mk,e,h
n (α) = 〈ψ(e1h1 trk1 f(α1) + · · ·+ enhn trkn f(αn))〉Fd,α

=
1

|Fd|
∑
f∈Fd

f(αi)6=∞,1≤i≤n

ψ(e1h1 trk1 f(α1) + · · ·+ enhn trkn f(αn)),

and

Mk,e,h
n =

∑
αi∈Fqki
i=1,...,n

q−(k1+···+kn)/2mk,e,h
n (α).

Lemma 8.15. Let Fd be any of the families under consideration. Let C1, . . . , Cs be the distinct conjugacy
classes of the α1, . . . , αn. Let ui be the degree of the elements of Ci. For i = 1, . . . , s, let

ηi =
1

ui

∑
αj∈Ci

ejhjkj .

Then

mk,e,h
n (α) =


EFd(u1, . . . , us) +O

(
qu1+···+us−d/2

)
if p | ηi for 1 ≤ i ≤ s,

O
(
qu1+···+us−d/2

)
otherwise.

Proof. Renumbering, suppose that αi ∈ Ci for 1 ≤ i ≤ s. Since trki f(αi) = ki
ui

trui f(αi) for i = 1, . . . , s, by
the definition of ηi, we have that

mk,e,h
n (α) =

1

|Fd|
∑
f∈Fd

f(αi) 6=∞,1≤i≤n

ψ (e1h1 trk1 f(α1) + · · ·+ enhn trkn f(αn))

=
1

|Fd|
∑
f∈Fd

f(αi) 6=∞,1≤i≤n

ψ (η1 tru1
f(α1) + · · ·+ ηs trus f(αs))

=
∑

βi∈Fqui , 1≤i≤s

ψ (η1 tru1
β1 + · · ·+ ηs trus βs)

|Fd(α1, . . . , αs, β1, . . . , βs)|
|Fd|

=
EFd(u1, . . . , us)

qu1+···+us

∑
βi∈Fqui , 1≤i≤s

ψ (η1 tru1
β1 + · · ·+ ηs trus βs) +O

(
qu1+···+us−d/2

)
by Lemma 8.3. The result now follows from Lemma 8.4. �

Lemma 8.16. Mk,e,h
n is bounded by a sum of terms q−(k1+···+kn)/2T (k1, . . . , kn), where each T (k1, . . . , kn)

is a product of elementary terms of the type ∑
m|(j1,...,jr)

mp|
∑r
i=1

eihiji

π(m)mr

such that the indices j1, . . . , jr of the elementary terms appearing in each T (k1, . . . , kn) are in bijection with
k1, . . . , kn.

For n = 2` even, let Nk,e,h
n be the sum of all possible terms q−(k1+···+kn)/2T (k1, . . . , kn) where the

T (k1, . . . , kn) are made exclusively of the following nested sums

(17)
∑

m1|(j1,j`+1)

m1p|e1h1j`+1+e`+1h`+1j`+1

π(m1)m2
1 · · ·

∑
m`|(j`,j2`)

m`p|e`h`j2`+e2`h2`j2`

π(m`)m
2
`EFd(m1, . . . ,m`).
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If n = 2` + 1 is odd, let Nk,e,h
n be the sum of all possible terms q−(k1+···+kn)/2T (k1, . . . , kn) where

T (k1, . . . , kn) are made exclusively of the following nested sums
(18) ∑

m1|(j1,j`+1)

m1p|e1h1j`+1+e`+1h`+1j`+1

π(m1)m2
1 · · ·

∑
m`|(j`,j2`)

m`p|e`h`j2`+e2`h2`j2`

π(m`)m
2
`

∑
m`+1|j2`+1

m`+1p|e2`+1h2`+1j2`+1

π(m`+1)m`+1EFd(m1, . . . ,m`,m`+1).

Let Lk,e,h
n be the sum of all the other terms q−(k1+···+kn)/2T (k1, . . . , kn) as defined above. Then,

Mk,e,h
n = Nk,e,h

n,d +O
(
Lk,e,h
n

)
+O

(
q3(k1+···+kn)/2−d/2

)
.

Proof. Using Lemma 8.15, we first write

Mk,e,h
n = q−(k1+···+kn)/2

∑
αi∈Fqki

, i=1,...,n

(α1,...,αn)∈A

EFd(u1, . . . , us) +O
(
q3(k1+···+kn)/2−d/2

)
,

where the set A of admissible (α1, . . . , αn) are those where p | ηi, i = 1, . . . , s. To count the number of
admissible (α1, . . . , αn), we first fix a partition of {1, . . . , n} in s classes C1, . . . Cs. Let k(Cw) be the gcd
of the ki such that i ∈ Cw and let δ(Cw) =

∑
i∈Cw eihiki. Then, for any such partition, the number of

(α1, . . . , αn) ∈ Fqk1 × · · · × Fqkn such that αi and αj are conjugate when i, j are in the same class Cw and
which are counted in A is bounded by

s∏
i=1

∑
m|k(Ci)
mp|δ(Ci)

π(m)m|Ci|,(19)

where we have used the fact that the number of (α1, . . . , αt) ∈ Fqk1 × · · · ×Fqkt which are conjugate over Fq
is given by ∑

m|(k1,...,kt)

π(m)mt.

Since EF (u1, . . . , us)� 1 by Remark 8.2, we get the first result of the statement by summing (19) over all
partitions of {1, . . . , n} in s classes C1, . . . Cs.

Suppose that n = 2` is even. Then, using inclusion-exclusion, the number of (α1, . . . , αn) ∈ Fqk1×· · ·×Fqkn
such that αi and αj are conjugate, if and only if i ≡ j(mod`) can be written as ∑

m1|(k1,k`+1)

m1p|e1h1k1+e`+1h`+1k`+1

π(m1)m2
1 · · ·

∑
m`|(k`,k2`)

m`p|e`h`k`+e2`h2`ke`

π(m`)m
2
`EFd(m1, . . . ,m`)

+ S(k1, . . . , kn)

where S(k1, . . . , kn) is a sum of terms in Lk,e,h
n . (We have to do inclusion-exclusion to remove the cases

where conjugate values of α belong to two different classes Cw.)
The case of n = 2` + 1 follows similarly, taking into account that one has to multiply by the factor

q−kn/2
∑
m|kn
mp|ekn

π(m)m. �

Theorem 8.17. Let Fd be any of the families under consideration. For any K with 1/|I| < K < d/n

〈
S±(K, f, ψ)n

〉
Fd

=


(2`)!

`!(2π2)`
log`(K|I|)

(
1 +O

(
log−1(K|I|)

))
n = 2`,

O
(

log`(K|I|)
)

n = 2`+ 1.

More generally, let 0 < h1, . . . , hn ≤ (p− 1)/2. Then for any K with 1/|I| < K < d/n,

〈
S±(K, f, ψh1) . . . S±(K, f, ψhn)

〉
Fd

=


Θ(h1,...,hn)

(2π2)`
log`(K|I|)

(
1 +O

(
log−1(K|I|)

))
n = 2`,

O
(

log`(K|I|)
)

n = 2`+ 1.
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The constant Θ(h1, . . . , hn) is given by

#{(e1, . . . , en) ∈ {−1, 1}, σ ∈ Sn : e1hσ(1) + e2hσ(2) ≡ · · · ≡ e2`−1hσ(2`−1) + e2`hσ(2`) ≡ 0 (mod p)}
where Sn denotes the permutations of the set of n elements.

Proof. We have that〈
S±(K, f, ψh1) . . . S±(K, f, ψhn)

〉
Fd

=

K∑
k1,...,kn=1
e1,...,en=±1

I±K(e1k1) . . . I±K(enkn)Mk,e,h
n ,

and we use Lemma 8.16 to replace Mk,e,h
n in the sum. The error term satisfies

K∑
k1,...,kn=1
e1,...,en=±1

I±K(e1k1) . . . I±K(enkn)O
(
q3(k1+···+kn)/2−d/2

)
�

(
K∑
k=1

q3k/2−d/2n

)n
� 1

when d > 3nK.
For the main term, we have to consider the sum of the terms T (k1, . . . , kn) from Lemma 8.16. For each

fixed T (k1, . . . , kn), we write the sum over k1, . . . , kn as s nested sums Σ1 . . .ΣsEFd(m1, . . . ,ms) where Σw
is a sum over the ki such that i ∈ Cw, and |EFd(m1, . . . ,ms)| � 1. If |Cw| = 1, then we have a sum

K∑
k=1

Î±K(k)q−k/2
∑
m|k
mp|ek

π(m)m� 1,(20)

because of Theorem 8.7. For r = |Cw| ≥ 2, we have a sum of the type

K∑
k1,...,kr=1

Î±K(e1k1) . . . Î±K(erkr)q
−(k1+···+kr)/2

∑
m|(k1,...,kr)

mp|
∑r
i=1

eihiki

π(m)mr.

When r = |Cw| > 2, we will show in Lemma 8.18 that the contribution from the terms of the sum over
k1, . . . , kr is bounded. Assuming this result, we have by Lemma 8.16 that the leading term in S±(K, f, ψ)n

will come from the contributions Nk,e,h
n,d .

If n = 2`, the leading terms are of the form

K∑
k1,...,kr=1

Î±K(e1k1) . . . Î±K(erkr)q
−(k1+···+kr)/2

∑
m1|(k1,k`+1)

m1p|e1h1k`+1+e`+1h`+1k`+1

π(m1)m2
1 · · ·

∑
m`|(k`,k2`)

m`p|e`h`k2`+e2`h2`k2`

π(m`)m
2
`

×EFd(m1, . . . ,m`)

By Definition 8.1 and Remark 8.2 combined with Proposition 8.12, for Fd = Ford
d ,F full

d the above sum gives(
1

2π2
log (K|I|)

)`
.

For Fvd , we have that EFd(m1, . . . ,m`) = 1 unless some of the mj ’s equal some of the ri’s. Since the ri’s are

fixed constants, this simply introduces an error term of the form O (log (K|I|))`−1
which does not change

the final result.
If n = 2`+ 1, the leading terms are of the form

O (log (K|I|))` .
The final coefficient is obtained by counting the numbers of ways to choose the ` coefficients ki’s with

positive sign (ei = 1) and to pair them with those with negative sign (ej = −1). �

Lemma 8.18. Let r > 2, then

S :=

K∑
k1,...,kr=1

Î±K(k1) . . . Î±K(kr)q
−(k1+···+kr)/2

∑
m|(k1,...,kr)
mp-(k1,...,kr)

π(m)mr = O(1)
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Proof. Suppose that k1 ≥ · · · ≥ kr. We use repeatedly the estimates from Remark 8.2. If k1 = kr, we have∑
m|(k1,...,kr)
mp-(k1,...,kr)

π(m)mr = O
(
kr−1

1 qk1
)
.

If k1 = 2kr, and all the other ki are equal to k1 or kr, we have∑
m|(k1,...,kr)
mp-(k1,...,kr)

π(m)mr = O
(
kr−1

1 qk1/2
)
.

In all the other cases, the estimate is ∑
m|(k1,...,kr)
mp-(k1,...,kr)

π(m)mr = O
(
kr−1

1 qk1/3
)
.

Putting things together, we get

S �
K∑
k=1

Î±K(k)rkr−1q−(r−2)k/2 +

r−1∑
`=1

K∑
k=1

Î±K(2k)`Î±K(k)r−`kr−1q(1−r/2−`/2)k

+

K∑
k1,...,kr=1

Î±K(k1) . . . Î±K(kr)k
r−1
1 q−k1/6−(k2+···+kr)/2

� 1

by Proposition 6.2. �

Remark 8.19. We note that if n = 2`,

(21)

(p−1)/2∑
h1,...,hn=1

Θ(h1, . . . , hn) =
(p− 1)`(2`)!

2``!
.

There are (2`)!
`!2`

ways of choosing unordered pairs of the form {ei, ej}. Inside each pair, exactly one of {ei, ej}
is positive and the other is negative, so there are a total 2` choices for the signs. Finally, for each pair there
are (p− 1)/2 possible values for hi which automatically determines the value of hj .

Remark 8.20. By Theorem 8.17, the moments are given by sums of products of covariances. Thus, they
are the same as the moments of a multivariate normal distribution. Moreover, the generating function of
the moments converges due to (21). Therefore, our random variables are jointly normal. Since the variables
are uncorrelated (cf. Theorem 8.13), it follows that our random variables are independent.

Recall that

S±(K,Cf ) =

p−1∑
j=1

S±(K, f, ψj).

Theorem 8.21. Assume that K = g/ log log(g|I|), g→∞ and either |I| is fixed or |I| → 0 while g|I| → ∞.
Then

S±(K,Cf )√
2(p−1)
π2 log(g|I|)

has a standard Gaussian limiting distribution when g→∞.

Proof. First we compute the moments and then we normalize them.
With our choice of K we have

log(K|I|)
log(g|I|)

= 1− log log log(g|I|)
log(g|I|)

→ 1 as g→∞.

Because of this, log(K|I|) can be replaced by log(g|I|) in our formulas.
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Recall that S±(K, f, ψh) = S±(K, f, ψp−h), then

S±(K,Cf )n =

2

(p−1)/2∑
h=1

S±(K, f, ψh)

n

= 2n
(p−1)/2∑

h1,...,hn=1

S±(K, f, ψh1) . . . S±(K, f, ψhn).

Therefore, the moment is given by

〈
S±(K,Cf )n

〉
Fd

= 2n
(p−1)/2∑

h1,...,hn=1

〈S±(K, f, ψh1) . . . S±(K, f, ψhn)〉Fd .

First assume that n = 2`. By Theorem 8.17, this is asymptotic to

2n

(2π2)`
log`(g|I|)

(p−1)/2∑
h1,...,hn=1

Θ(h1, . . . , hn).

Finally we use equation (21) to conclude that when n = 2`,〈
S±(K,Cf )n

〉
Fd

=
2n(p− 1)`(2`)!

2``!(2π2)`
log`(g|I|) =

(2`)!

`!π2`
(p− 1)` log`(g|I|).

In particular, the variance is asymptotic to 2(p−1)
π2 log(g|I|).

Now assume that n is odd, n = 2`+ 1. Theorem 8.17 yields〈
S±(K,Cf )n

〉
Fd

= O
(

log`(g|I|)
)
.

Hence the normalized moment converges to

lim
g→∞

〈
S±(K,Cf )2`

〉(√
2(p−1)
π2 log(g|I|)

)2`
=

(2`)!

`!2`
,

for n = 2`, and to zero for n odd. Hence, we have obtained the moments of the standard Gaussian
distribution. �

9. The distribution of zeroes

We prove in this section that
NI(Cf )− 2g|I|√

(2(p− 1)/π2) log(g|I|)|
converges in mean square to

S±(K,Cf )√
(2(p− 1)/π2) log(g|I|)

.

Then, using Theorem 8.21, we get the result of Theorem 1.2 since convergence in mean square implies
convergence in distribution.

Lemma 9.1. Let Fd be any of the families under consideration. Assume that K = g/ log log(g|I|), g→∞
and either |I| is fixed or |I| → 0 while g|I| → ∞. Then〈∣∣∣∣∣NI(Cf )− 2g|I|+ S±(K,Cf )√

(2(p− 1)/π2) log(g|I|)

∣∣∣∣∣
2〉
Fd

→ 0.

Proof. From equation (10), using the Beurling–Selberg polynomials and the explicit formula (Lemma 7.1),
we deduce that

−2g

K + 1
≤ NI(Cf )− 2g|I|+ S−(K,Cf ) ≤ S−(K,Cf )− S+(K,Cf ) +

2g

K + 1

and
−2g

K + 1
≤ −NI(Cf ) + 2g|I| − S+(K,Cf ) ≤ S−(K,Cf )− S+(K,Cf ) +

2g

K + 1
.
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Using these two inequalities to bound the absolute value of the central term, we obtain〈(
NI(Cf )− 2g|I|+ S±(K,Cf )

)2〉
Fd

≤ max

{(
2g

K + 1

)2

,

〈(
S−(K,Cf )− S+(K,Cf ) +

2g

K + 1

)2
〉
Fd

}

≤
(

2g

K + 1

)2

+ max

{
0,
〈(
S−(K,Cf )− S+(K,Cf )

)2〉
Fd

+
4g

K + 1

〈
S−(K,Cf )− S+(K,Cf )

〉
Fd

}
.

Now Theorem 8.7 implies that〈
S−(K,Cf )− S+(K,Cf )

〉
Fd

=
〈
S−(K,Cf )

〉
Fd
−
〈
S+(K,Cf )

〉
Fd

= O(1).

For the remaining term we note that〈(
S−(K,Cf )− S+(K,Cf )

)2〉
Fd

=
〈(
S−(K,Cf )

)2〉
Fd

+
〈(
S+(K,Cf )

)2〉
Fd
− 2

〈
p−1∑

j1,j2=1

S−(K, f, ψj1)S+(K, f, ψj2)

〉
Fd

.

By Corollary 8.14, this equals

4(p− 1)

π2
log(g|I|) +O(1)− 4(p− 1)

π2
log(g|I|) +O(1) = O(1).

Therefore, 〈(
NI(Cf )− 2g|I|+ S±(K,Cf )

)2〉
= O

((
2g

K + 1

)2
)

and 〈(
NI(Cf )− 2g|I|+ S±(K,Cf )√

(2(p− 1)/π2) log(g|I|)

)2〉
→ 0

when g tends to infinity and K = g/ log log(g|I|). �
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