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Abstract. We prove an identity between Mahler measures of polynomials

that was originally conjectured by Boyd. The combination of this identity

with a result of Zudilin leads to a formula involving a Mahler measure of a
Weierstrass form of conductor 17 given in terms of L′(E, 0). Our proof involves

a nontrivial identity between regulators which leads to the elliptic curve L-

function being expressed in terms of the regulator evaluated in a non-rational
non-torsion point.

1. Introduction

For a non-zero multivariate rational function P ∈ C(x1, . . . , xn), the (logarith-
mic) Mahler measure is defined as

m(P ) :=
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)|dx1

x1
· · · dxn

xn
,

where Tn = {(x1, . . . , xn) ∈ Cn||x1| = · · · = |xn| = 1}.
Boyd [Bo98] systematically examined families of polynomials associated to el-

liptic curves and found numerical connections between their Mahler measures and
special values of their L-functions. For example, Boyd considered the following
two-variable families

Pk(x, y) :=x+
1

x
+ y +

1

y
+ k,

Fk(x, y) :=y2 + kxy − x3 − x,

where k is a parameter.
For k 6= 0,±4, the zero set Pk(x, y) = 0 is a genus-one curve EN(k), where N(k)

denotes the conductor. The same applies to the zero set Fk(x, y) = 0 which is
already given in Weierstrass form.

Boyd found for k integral many formulas of the form

(1) m(Pk)
?
= rkL

′(EN(k), 0),
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2 MATILDE LALÍN AND FRANK RAMAMONJISOA

where rk is a rational number of low height and the question mark stands for a
numerical formula that is true for at least 20 decimal places. He found similar for-
mulas when Pk is replaced by Fk as well as several other one-parameter polynomial
families.

Some equations of the type (1) were explained by Deninger [De97] in terms
of Bĕılinson’s conjectures. Rodriguez-Villegas further investigated this connection
and proved some of these formulas involving Pk(x, y) for cases where the elliptic

curve has complex multiplication and k2 ∈ Z (for instance, k = 4
√

2). In fact,
it should be noted that the condition that k is integral may be relaxed in several
cases. For example, for the family Pk(x, y), Boyd also found formulas of the type
(1) for k ∈ iZ.

After the complex multiplication cases, Rodriguez-Villegas [RV02] proved an
identity involving two Mahler measures of Weierstrass forms coming from Boyd’s
conjectures, namely,

(2) 7m(y2 + 2xy + y − x3 − 2x2 − x) = 5m(y2 + 4xy + y − x3 + x2).

In the formula above, each side is conjectured to be equal to 35L′(E37, 0), where E37

is the elliptic curve E37 : y2 + y = x3 − x of conductor 37. Both Weierstrass forms
involved in (2) are isomorphic to E37. The technique for this proof is to relate the
Mahler measure to the regulator within the framework of Bĕılinson’s conjectures
and then to prove the identity at the level of the regulator.

Following Rodriguez-Villegas’ ideas, Bertin [Be04a] proved

(3) m(y2 − xy + y − x3) = 2m((x+ 1)y2 + (x2 + x+ 1)y + x(x+ 1)).

In this formula, a Weierstrass form is related to a non-Weierstrass form, and both
sides are expected to be equal to 2L′(E14, 0). Further identites of this type were
proven by Bertin [Be04a, Be04b], Touafek and Kedara [TK07], Laĺın and Rogers
[LR07], Laĺın [La10], and Guillera and Rogers [GR15] by similar methods.

An important breakthrough in the area happened when formulas of the type (1)
were proven for curves without complex multiplication. This involves the results
of Brunault [Br05, Br06] and Mellit [Me], who related the right-hand side of (3) to
2L′(E14, 0), thus providing the first fully proven Mahler measure formula involving
a Weierstrass form. Rogers and Zudilin [RZ12, RZ14] proved several formulas
including the original conjecture appearing both in [Bo98] and [De97], namely,

m(P1) = L′(E15, 0).

Further breakthroughs came with a result due to Mellit, Brunault, and Zudilin
[Zu14] providing a systematic method of proof for some of these type of formulas
involving modular unit parametrisations. This allowed many proofs and reproofs of
identities involving the specific family Pk(x, y). Further extensions of this method
by Brunault [Br] led to proofs of identities such as

(4) m(y2 + kxy + y − x3) = L′(EN(k), 0)

for k = −2,−3 where EN(k) has conductor 35, 54 respectively.
In this work, we will prove the following result.

Theorem 1. We have the following identity between Mahler measures:

(5) 4m(F3) = 7m(Pi).
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Comparing this with the following result by Zudilin [Zu14]

(6) m(Pi) = 2L′(E17, 0),

allows us to conclude the following identity.

Corollary 2. We have the following Mahler measure formula involving a Weier-
strass form:

m(y2 + 3xy − x3 − x) =
7

2
L′(E17, 0).

To our knowledge, the result of Corollary 2 represents the first fully proven
Mahler measure formula in the family Fk, and it is only the fourth Weierstrass form
whose Mahler measure has been proven (with the other three given by Equations
(4) for k = −1,−2,−3.

In order to prove Theorem 1 we return to the methods used to prove (2) by
relating the regulators. It should be noted that the identity between the regulators
in this case is highly nontrivial, and considerably more involved than in any previous
identities that were proven. In its simpler form, the regulator identity reads as

(7) 7DE(P ) = −4DE(A),

where P is a rational torsion point of order 4 while A is a non-rational point
of infinite order, which seems to go beyond some of the predictions for Bĕılinson’s
conjectures. We remark that the only cases among those mentioned above involving
non-torsion points are both sides of (2), and even in this case, the involved points
are rational.

This article is organized as follows. In Section 2 we describe the theoretical
framework connecting the Mahler measure formulas discussed in this article to
the Bĕılinson regulator. In Section 3 we give the isomorphism relating the curves
and some notable points in E, which we later use in Section 4 to establish the
relationship between the regulators. In Section 5 we take a small detour from the
proof to reflect on Formula (7) in the context of Bĕılinson’s conjectures. Then
in Section 6 we characterize the homology class corresponding to the integration
paths. We strive to include all the details of this computation, which is not always
clear in previous works. Finally, we conclude the proof in Section 7 and comment
on future directions in Section 8.

2. Mahler measure and the regulator

In this section we will recall the definition given by Bloch and Bĕılinson of the
regulator map on the second K-group of an elliptic curve E and explain how it can
be computed in terms of the elliptic dilogarithm and how it can be related to the
Mahler measure. We will start by giving all the elements involved in the definition
of the regulator.

Let F be a field. The second K-group of F has a particularly simple expression
given by Matsumoto’s theorem as

K2(F ) ∼= Λ2F×/{x⊗ (1− x) : x ∈ F, x 6= 0, 1}.

Let E/Q be an elliptic curve. Under certain conditions that are verified in all
the cases considered in this article (the triviality of tame symbols, see [RV97]), we
can think of K2(E)⊗Q ⊂ K2(Q(E))⊗Q.
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Let x, y be two functions in Q(E). Then consider the differential form

η(x, y) := log |x|d arg y − log |y|d arg x,

where d arg x is defined by Im(dx/x).
The form η(x, y) is multiplicative, antisymmetric, and satisfies

η(x, 1− x) = dD(x),

where D(x) is the Bloch–Wigner dilogarithm given by

(8) D(x) = Im(Li2(x)) + arg(1− x) log |x|,

and

Li2(x) = −
∫ x

0

log(1− z)
z

dz.

We are now ready to give the main definition in this section.

Definition 3. The regulator map of Bloch [Bl00] and Bĕılinson [Be80] is given by

r : K2(E)⊗Q → H1(E,R)

{x, y} →
{
γ →

∫
γ

η(x, y)

}
.

Remark 4. Notice the following facts.

• The regulator is actually defined over K2(E), where E is the Néron model
of the elliptic curve. K2(E)⊗Q is a subgroup of K2(E)⊗Q determined by
finitely many extra conditions (see [BG83]).
• In the above defintion, we take γ ∈ H1(E,Z) and interpret H1(E,R) as the

dual of H1(E,Z).
• Because of the way that complex conjugation acts on η, the regulator map

is trivial for the classes in H1(E,Z)+, the cycles that remain invariant by
complex conjugation. Therefore it suffices to consider the regulator as a
function on H1(E,Z)−.

We will now explain how to compute the integral of η(x, y). Recall that E is an
elliptic curve defined over Q. Then we can write

(9)
E(C)

∼→ C/(Z + τZ)
∼→ C×/qZ

S = (℘(u), ℘′(u)) → u mod Λ → z = e2πiu

where ℘ is the Weierstrass function, Λ is the lattice Z + τZ, τ ∈ H, and q = e2πiτ .
The next definition is due to Bloch [Bl00].

Definition 5. The elliptic dilogarithm is a function on E(C) given for S ∈ E(C)
by

(10) DE(S) =
∑
n∈Z

D(qnz),

where D is the Bloch–Wigner dilogarithm defined by (8).

Let Z[E(C)] be the group of divisors on E and let

Z[E(C)]− ∼= Z[E(C)]/{(S) + (−S) : S ∈ E(C)}.
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Let x, y ∈ C(E)×. The diamond operation is defined by

� : Λ2C(E)× → Z[E(C)]−

(x) � (y) =
∑
i,j

minj(Si − Tj),

where
(x) =

∑
i

mi(Si) and (y) =
∑
j

nj(Tj).

Thus, we have the following result.

Theorem 6. [Bloch [Bl00]] The elliptic dilogarithm DE extends by linearity to a
map from Z[E(Q)]− to C. Let x, y ∈ Q(E) and {x, y} ∈ K2(E). Then

r({x, y})[γ] = DE((x) � (y)),

where γ is a generator of H1(E,Z)−.

Remark 7. The result above implies in particular that

DE((x) � (1− x)) = 0

for any x ∈ Q(E).

Deninger [De97] was the first to write a formula of the form

(11) m(P ) =
1

2π
r({x, y})[γ].

Then Rodriguez-Villegas [RV97] made a thorough study of the properties of η(x, y)
and combined the above expression with Theorem 6 to deduce identity (2) in [RV02].

We will now give some more details about (11). Let P (x, y) ∈ C[x, y] a polyno-
mial of degree 2 on y. We may then write

P (x, y) = P ∗(x)(y − y1(x))(y − y2(x)),

where y1(x), y2(x) are algebraic functions.
By applying Jensen’s formula with respect to the variable y, we have

m(P )−m(P ∗) =
1

(2πi)2

∫
T2

log |P (x, y)|dx
x

dy

y
−m(P ∗)

=
1

(2πi)2

∫
T2

(log |y − y1(x)|+ log |y − y2(x)|)dx
x

dy

y

=
1

2πi

∫
|x|=1,|y1(x)|≥1

log |y1(x)|dx
x

+
1

2πi

∫
|x|=1,|y2(x)|≥1

log |y2(x)|dx
x
.

Now suppose that |y2(x)| ≤ 1 as long as |x| = 1 (this happens, for instance, if the
constant coefficient of P ∈ C[x][y] is 1). Then the above formula may be rewritten
as

m(P )−m(P ∗) =
1

2πi

∫
|x|=1,|y1(x)|≥1

log |y1(x)|dx
x

=− 1

2π

∫
|x|=1,|y1(x)|≥1

η(x, y1).

When P corresponds to an elliptic curve and when the set {|x| = 1, |y1(x)| ≥ 1}
can be seen as a cycle in H1(E,Z)−, then we may be able to recover a formula of
the type (11). This has to be examined on a case by case basis.



6 MATILDE LALÍN AND FRANK RAMAMONJISOA

3. Curves, points, and an isomorphism

The first step in proving Theorem 1 consists of identifying both sides of Equation
(5) with elliptic curves.

A recurrent condition in Section 2 is that both the curve and the rational func-
tions over the curve be defined over Q. It is discussed in page 54 of [Bo98] that the
right-hand side of Equation (5) is given by

m(Pi(x, y)) = m

(
x0 −

1

x0
+ y0 −

1

y0
+ 1

)
.

To see this, it suffices to consider the change of variables x = ix0 and y = iy0 and
divide by i, which does not affect the Mahler measure.

Remark 8. From now on, we will work with the polynomial in the right-hand side
of the above equation, which we will denote by R1(x, y). We will also rename by
x, y the functions x0, y0.

Let E be the elliptic curve defined by {F3 = 0}. We have the following change
of variables (see [LR07] and [Bo98]):

ϕ : R1 : x− 1

x
+ y − 1

y
+ 1 = 0→ E : Y 2 + 3XY = X3 +X

given by

X = −xy, Y = x(1 + y − xy),

x =
Y +X

X + 1
, y = −Y + 2X

X + 1
.

The curve E has rational torsion E(Q)tors = 〈P 〉 ∼= Z/4Z, where P = (−1, 2),
2P = (0, 0), and 3P = −P = (−1, 1). E has also some notable complex points

A = (i, 0), A = (−i, 0) satisfying A+A = 2P.

We will see in Section 5 that the points A,A have infinite order.

4. The diamond operation

In this section we proceed to compute the diamond operation for the pairs of
functions x ◦ ϕ−1, y ◦ ϕ−1 and X,Y ∈ Q(E). Then we will compare these two
results.

Proposition 9. We have the following relations in Z[E(Q)]−:

(12) (X) � (Y ) = 4(A) + 4(A),

and

(13) (x ◦ ϕ−1) � (y ◦ ϕ−1) = 8(P ).

Proof. By looking first at the divisors of some rational functions on E, we have,

(X) =2(2P )− 2O,

(X + 1) =(P ) + (−P )− 2O,

(Y + 2X) =2(P ) + (2P )− 3O,

(Y +X) =2(−P ) + (2P )− 3O,

(Y ) =(2P ) + (A) + (A)− 3O.



THE MAHLER MEASURE OF A WEIERSTRASS FORM 7

If we apply the diamond operation between the first and the last of the above
equations, we immediately obtain (12):

(X) � (Y ) = 4(A) + 4(A).

By composing with ϕ−1, we have

(x ◦ ϕ−1) =− (P ) + (2P ) + (−P )−O,
(y ◦ ϕ−1) =(P ) + (2P )− (−P )−O.

We obtain (13) by applying the diamond operation. �

We need to relate the dilogarithm DE evaluated in both elements (x◦ϕ−1)� (y ◦
ϕ−1) and (X) � (Y ) of Z[E(C)]−. For two elements α, β ∈ Z[E(C)]−, we will write

α ∼ β

when

DE(α) = DE(β).

In particular, Remark 7 implies that α ∼ β if

(14) α− β =
∑

ci(fi) � (1− fi) for some fi ∈ Q(E), ci ∈ Z.

Proposition 10. We have the following relationship:

4(X) � (Y ) ∼ −7(x ◦ ϕ−1) � (y ◦ ϕ−1).

Proof. Our goal is to find rational functions fi ∈ Q(E) such that we can write
Equation (14) for α and β multiples of (x◦ϕ−1)�(y◦ϕ−1) and (X)�(Y ) respectively.

We start by considering f1 to be the line passing through A and A so that 1−f1

passes through the point −P . We obtain

(Y ) =(2P ) + (A) + (A)− 3O,

(1− Y ) =(−P ) + (U) + (Uσ)− 3O,

where U =
(

1+
√

5
2 , 1

)
and Uσ =

(
1−
√

5
2 , 1

)
. Here σ is the Galois element

√
5 →

−
√

5. These new points satisfy U + Uσ = P .
Now we compute the diamond operation of the previous functions:

0 ∼(Y ) � (1− Y )

∼− 4(P )− 3(A)− 3(A) + 3(U) + 3(Uσ) + (P + U) + (P + Uσ)

+ (A− U) + (A− U) + (A− Uσ) + (A− Uσ).(15)

Next, we consider f2 to be the tangent line at −P so that 1− f2 passes through
P + U and P + Uσ. We have

(Y +X) =2(−P ) + (2P )− 3O,

(1− Y −X) =(P ) + (P + U) + (P + Uσ)− 3O,

where P + U =
(
−1−

√
5

2 , 3+
√

5
2

)
and P + Uσ =

(
−1+

√
5

2 , 3−
√

5
2

)
.

Once again, we find the diamond operation of the previous functions,

0 ∼(Y +X) � (1− Y −X)

∼10(P ) + (U) + (Uσ) + 5(P + U) + 5(P + Uσ).(16)
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Now we find a quadratic polynomial f3 whose divisor is supported in 〈P 〉, P +U
and P + Uσ, and such that the divisor of 1− f3 is supported in P,A, and A.

(Y −X2) =(2P ) + (−P ) + (P + U) + (P + Uσ)− 4O,

(1− Y +X2) =2(P ) + (A) + (A)− 4O.

We compute the diamond operation and obtain

0 ∼(Y −X2) � (1− Y +X2)

∼14(P ) + 5(A) + 5(A) + 2(U) + 2(Uσ)− 4(P + U)− 4(P + Uσ)

+ (A− U) + (A− U) + (A− Uσ) + (A− Uσ).(17)

We combine Equations (15), (16), and (17) and obtain

0 ∼− (Y ) � (1− Y ) + (Y −X) � (1− Y +X) + (Y −X2) � (1− Y +X2)

∼28(P ) + 8(A) + 8(A).

In other words, we have proven that

(18) 7DE(P ) + 2DE(A) + 2DE(A) = 0.

Combining the line above with Equations (13) and (12), we finally reach the
desired relationship.

�

5. An interesting case of Bĕılinson’s conjectures

The goal of this section is to further reflect on the meaning of Equation (18) in
the context of Bĕılinson’s conjectures. The results of this section are not needed
for the proof of Theorem 1 but they are interesting in their own right.

We will start by proving that DE(A) = DE(A) and then showing that A is
non-torsion. The first property is consequence of the following more general fact.

Lemma 11. Let E/R be an elliptic curve. Let B = (ib, β) ∈ E(C) with b ∈ R and
let B = (−ib, β) be the point resulting from conjugating each coordinate of B. Then

DE(B) = DE(B)

where DE is the elliptic dilogarithm given by (10).

Proof. We revisit diagram (9) and write for Λ = Z + τZ,

F : E(C)→ C/Λ

the map given by

S → 1

Ω

∫ S

O

ω mod Λ,

where Ω is the real period and ω is the standard invariant differential.
Thus,

F(℘(u), ℘′(u)) ≡ u mod Λ.

Let Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 be the Weierstrass form for E

and write

f(X) = (a1X + a3)2 + 4(X3 + a2X
2 + a4X + a6).
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Then the standard invariant differential is given by

ω =
dX√
f(X)

.

By computing F(B) and F(B), we obtain,

ΩF(B) =

∫ B

O

ω = −
∫ i∞

ib

dX√
f(X)

= −
∫ ∞
b

diZ√
f(iZ)

ΩF(B) =

∫ B

O

ω = −
∫ −i∞
−ib

dX√
f(X)

= −
∫ ∞
b

−diZ√
f(−iZ)

and we conclude that F(B) = F(B).
We proceed to compute the elliptic dilogarithm in B. By (10), we have

DE(B) =
∑
n∈Z

D (qnzB) =
∑
n∈Z

D
(
e2πi(nτ+F(B))

)
=
∑
n∈Z

D
(
e2πi(nτ+F(B))

)
=
∑
n∈Z

D
(
e−2πi(nτ+F(B))

)
.

Recall that D(x) = −D(x−1) = −D(x) (see for example, pages 10-11 in [Za07]).
Thus,

DE(B) =−
∑
n∈Z

D
(
e−2πi(nτ+F(B))

)
=
∑
n∈Z

D
(
e2πi(nτ+F(B))

)
=
∑
n∈Z

D
(
e2πi(−nτ+F(B))

)
=
∑
n∈Z

D
(
e2πi(n(−τ)+F(B))

)
=DE(B),

since Λ = Λ = Z + (−τ)Z as the curve is defined over the reals. �

By setting A = (i, 0) and considering E : Y 2 + 3XY = X3 +X in the previous
lemma, we obtain that DE(A) = DE(A).

Lemma 12. A = (i, 0) ∈ E : Y 2 + 3XY = X3 +X is non-torsion.

Proof. Consider the isomorphism

φ : E → E1 : Y 2
1 = X3

1 − 9X2
1 + 16X1

given by

Y1 = 4i(2Y + 3X), X1 = −4X.

The image of A is A1 = (−4i,−12) with 2A1 =
(

16
9 ,−

64
27

)
. By Nagell–Lutz

theorem, 2A1 is non-torsion, and that means that the same is true for 2A and for
A. �
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Thus we have been able to write Equation (18) as

(19) 7DE(P ) = −4DE(A).

The above equation is very interesting because it relates the dilogarithm evaluated
in the rational torsion point P with the dilogarithm evaluated in a complex point
of infinite order A.

We recall that the Bloch and Bĕılinson conjectures predict for E/Q that

L(E, 2) =
π

N
DE(α) for some α ∈ Z[E(Q)tors],

where N is the conductor of E. This was proven for CM elliptic curves by Bloch
[Bl00] and for elliptic modular curves by Bĕılinson [Be83]. Zagier and Gangl [ZG00]
further conjectured that

L(E, 2) =
π

N
DE(α) for some α ∈ Z[E(Q)]Gal(Q/Q).

It can be seen from Equations (6) and (13) and the functional equation of
L(E17, s) that

L(E17, 2) =
8π

17
DE(P ).

Combining the equation above with (19) we obtain that

L(E17, 2) = −32π

119
DE(A).

This identity is very interesting as it does not fit the previous versions of the Bloch
and Bĕılinson’s conjecture.

6. The homology class of the integration path

In this section we identify the integration path in the Mahler measure formulas
involved in Equation (5) in terms of homology classes in the elliptic curve.

Following the discussion at the end of Section 2 and Remark 8, we need to
identify the integration paths for the Mahler measures of R1 and F3. A starting
point is to look for the intersection of each of the curves {R1 = 0} and {F3 = 0}
with the unit torus T2. This will give an idea if there is a root y(x) whose absolute
value remains always larger or smaller than 1 as |x| = 1.

For the case of R1, since x− 1
x , y −

1
y ∈ iR for |x| = |y| = 1, we can never have

R1(x, y) = 0 in T2.
If we think of yR1(x, y) ∈ C(x)[y] and use the equation to implicitly define y as

a function of x, we obtain two roots y1(x) and y2(x) that satisfy y1(x)y2(x) = −1
and they never satisfy |yj(x)| = 1 as long as |x| = 1. Therefore one of them, say
y1(x), has always absolute value larger than 1 and the other, say y2(x), smaller.
We can summarize by saying that the integration set for the Mahler measure of R1

is given by

(20) γ1 = {(x, y1) : |x| = 1}

For the second curve, we may make the change of variables Y = ZX and divide
by X2. Thus the Mahler measure of F3 equals that of

G(X,Z) = Z2 + 3Z −X − 1

X
.
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Suppose that |X| = 1 and write X = eiθ. Then we need to solve

Z2 + 3Z − 2 cos θ = 0

and

Z± =
−3±

√
9 + 8 cos(θ)

2
.

The interior of the square root is always ≥ 1, therefore the roots are always real.
In addition, notice that 9 + 8 cos(θ) ≤ 17 and

√
17 < 5. Therefore, |Z+| < 1. As

for Z−, we have that the only possibility for |Z−| = 1 is that Z− = ±1. But the
only solution to

1 + 3− 2 cos(θ) = 0 or 1− 3− 2 cos(θ) = 0,

is with Z− = −1 and θ = π.
Outside of Z− = −1, we have that |Z−| > 1 as long as |X| = 1. Thus, the

integration cycle for the Mahler measure of G is given by

(21) γ2 = {(X,Z−) : |X| = 1}.

To summarize, we have proven the following result.

Proposition 13. Let y1 = y1(x) be the root of R1 = 0 such that |y1| > 1 as long
as |x| = 1. Let Z− = Z−(X) be the root of G = 0 such that |Z−| ≥ 1 as long as
|X| = 1. Then we have

m(Pi) = m(R1) =− 1

2π

∫
|x|=1

η(x, y1),

m(F3) = m(G) =− 1

2π

∫
|X|=1

η(X,Z−).

Remark 14. Because the polynomials are tempered (see [RV97]), the integrals
above only depend on the homology classes of ϕ(γ1) and γ2 in H1(E,Z).

We need to determine the homology class of the integration cycles in H1(E,Z).

Proposition 15. Let γ1, γ2 be given by Equations (20), (21). Then ϕ∗[γ1], [γ2] ∈
H1(E,Z)− and ±ϕ∗[γ1] = [γ2] in H1(E,Z)−.

Remark 16. Since we know that the Mahler measure is always positive, the sign
ambiguity is not a problem here.

Before continuing we need to prove an identity between elliptic integrals that
will be key to the proof of Proposition 15.

Lemma 17. We have that

(22)

∫ π

−π

dθ√
4 + (2i sin θ + 1)

2
=

∫ π

−π

dθ√
9 + 8 cos θ

.
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Proof. It should be noted that the left-hand side of (22) is real. Indeed, separating
the integration domain in two pieces and making the substitution τ = −θ,∫ π

−π

dθ√
4 + (2i sin θ + 1)

2
=

∫ π

0

dθ√
4 + (2i sin θ + 1)

2
+

∫ 0

−π

dθ√
4 + (2i sin θ + 1)

2

=

∫ π

0

dθ√
4 + (2i sin θ + 1)

2
+

∫ π

0

dτ√
4 + (−2i sin τ + 1)

2

Thus, ∫ π

−π

dθ√
4 + (2i sin θ + 1)

2
∈ R.

In what follows, we proceed to write both integrals from Equation (22) in terms
of Complete Elliptic Integrals of the First Kind. We continue working with the
left-hand side. Let t = sin θ for 0 ≤ θ ≤ π

2 . Then dt√
1−t2 = dθ and we have∫ π

−π

dθ√
4 + (2i sin θ + 1)

2
=4 Re

∫ π
2

0

dθ√
4 + (2i sin θ + 1)

2

=4 Re

∫ 1

0

dt√
(1− t2)(4 + (2it+ 1)

2
)
.

Consider the following change of variables

z =
1− i

(
1+
√

17
4

)
t

t− i
(

1+
√

17
4

) , t =
1 + i

(
1+
√

17
4

)
z

z + i
(

1+
√

17
4

) .

The relationship between the differentials is given by

dt = −

(
17 +

√
17

8

)
dz(

z + i
(

1+
√

17
4

))2 .

Applying this change of variables, we obtain,∫ π

−π

dθ√
4 + (2i sin θ + 1)

2

= 4 Re

∫ 1

0

dt√
(1− t2)(4 + (2it+ 1)

2
)

=

(
−1 +

√
17

2

)
Re

∫ 1

i
(
−1+

√
17

4

) dz√
(1− z2)

(
1−

(
−1+

√
17

1+
√

17

)2

z2

) .
We complete the integration path with the imaginary axis connecting 0 to i

(
−1+

√
17

4

)
and the real axis connecting 0 to 1. Since the interior of the region is contained in
the unit disk, the integrand has a holomorphic branch and the integral around the
whole boundary equals zero.
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The integral ∫ i
(
−1+

√
17

4

)
0

dz√
(1− z2)

(
1−

(
−1+

√
17

1+
√

17

)2

z2

) ∈ iR,
since the domain is included in the imaginary axis.

Therefore, we conclude that∫ π

−π

dθ√
4 + (2i sin θ + 1)

2
=

(
−1 +

√
17

2

)∫ 1

0

dz√
(1− z2)

(
1−

(
−1+

√
17

1+
√

17

)2

z2

)

=

(
−1 +

√
17

2

)
K

(
−1 +

√
17

1 +
√

17

)
,

where K(k) denotes the Complete Elliptic Integral of the First Kind

K(k) :=

∫ π
2

0

dθ√
1− k2 sin2 θ

=

∫ 1

0

dt√
(1− t2)(1− k2t2)

.

Now we focus on the right-hand side of Equation (22). By setting θ = 2τ , we
have ∫ π

−π

dθ√
9 + 8 cos θ

=2

∫ π

0

dθ√
9 + 8 cos θ

=4

∫ π
2

0

dτ√
17− 16 sin2 τ

=
4√
17
K

(
4√
17

)
.

Recall the following identity, which can be deduced from the arithmetic-geometric
mean identity:

1

a
K

(√
a2 − b2
a

)
=

2

a+ b
K

(
a− b
a+ b

)
.

Setting a =
√

17, b = 1 above, we obtain,

1√
17
K

(
4√
17

)
=

2

1 +
√

17
K

(√
17− 1√
17 + 1

)
.

This concludes the proof of Equation (22). �

Proof of Proposition 15. Our goal is to see that

±
∫
ϕ∗(|x|=1)

ω =

∫
|X|=1

ω ∈ iR.

Over E, we have,

(23) ω =
dX

2Y + 3X
.
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We would like to find ϕ∗ω, namely, to express ω in terms of x, y so that we can
integrate it over γ1. To begin, by looking at the formulas for ϕ, we have

dX = −(xdy + ydx).

By differentiating R1 we get(
1 +

1

x2

)
dx+

(
1 +

1

y2

)
dy = 0.

Then, we obtain,

(24) dX =

(
x+ 1

x − y −
1
y

)
dx(

1 + 1
y2

) .

On the other hand,

(25) 2Y + 3X = x (2− y − 2xy) .

Finally, combining (24) and (25) with (23), we obtain

ϕ∗ω =

(
x+ 1

x − y −
1
y

)
dx

x
(
y + 1

y

)(
2
y − 1− 2x

) .
Thus, our goal is to integrate

(26)

∫
ϕ∗(|x|=1)

ω =

∫
|x|=1

ϕ∗ω =

∫
|x|=1

(
x+ 1

x − y −
1
y

)
dx

x
(
y + 1

y

)(
2
y − 1− 2x

) ,
where y is the root of absolute value > 1 in x− 1

x + y − 1
y + 1 = 0.

Let x = eiθ with −π ≤ θ ≤ π. The roots of the equation are given by

y± =
−
(
x− 1

x + 1
)
±
√(

x− 1
x + 1

)2
+ 4

2

=
− (2i sin θ + 1)±

√
(2i sin θ + 1)

2
+ 4

2
.

For the sake of notation, we write

y± =
− (2i sin θ + 1)±

√
∆

2
.

Also, remark that y+y− = −1 from the equation R1 = 0.
With this change of variables, we have,

2

y±
− 1− 2x = −(2y∓ + 1 + 2x) = −2 cos θ ±

√
∆
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Taking the above into account, we obtain for ϕ∗ω,

ϕ∗ω =

(
x+ 1

x − y± −
1
y±

)
dx

x
(
y± + 1

y±

)(
2
y±
− 1− 2x

)
=

(
2 cos θ ∓

√
∆
)

±
√

∆
(
−2 cos θ ±

√
∆
) idθ

=∓ idθ√
∆

=∓ idθ√
(2i sin θ + 1)

2
+ 4

.

In sum, (26) becomes

(27)

∫
ϕ∗(|x|=1)

ω = ∓i
∫ π

−π

dθ√
4 + (2i sin θ + 1)

2
,

and the sign depends on the choice of y±.
On the other hand, we need to evaluate

(28)

∫
|X|=1

ω =

∫
|X|=1

dX

2Y + 3X
,

where Y is the root of absolute value > 1.
Again with the change of variables X = eiθ, we have,

Y± =
−3X ±

√
9X2 + 4(X3 +X)

2

=X

(
−3±

√
9 + 8 cos θ

2

)
.

Referring to the discussion about G(X,Z), the path that we must take corresponds
to the negative sign . Thus, in the integral (28), we will take

Y = X

(
−3−

√
9 + 8 cos θ

2

)
.

For the expression for ω, we obtain,

ω =
dX

2Y + 3X

=− idθ√
9 + 8 cos θ

.

Finally, Equation (28) becomes

(29)

∫
|X|=1

ω = −i
∫ π

−π

dθ√
9 + 8 cos θ

.

Since the right-hand side is purely imaginary, we conclude that [γ2] ∈ H1(E,Z)−.
By combining Equations (27) and (29), the result follows from Lemma 17. �
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7. The end of the proof

Here we finish the proof of Theorem 1. Recall that Proposition 13 gives

m(Pi) =− 1

2π

∫
γ1

η(x, y),

m(F3) =− 1

2π

∫
γ2

η(X,Y ),

where we have used the fact that ZX = Y , the multiplicativity of η, and the fact
that η(X,X) = 0.

Proposition 15 implies that ±ϕ∗[γ1] = [γ2] ∈ H1(E,Z)− and ±ϕ∗[γ1] = [γ2] =
C[γ] ∈ H1(E,Z)−, where we have denoted by [γ] a generator of H1(E,Z)−. By
Theorem 6, we have,∫

γ1

η(x, y) =

∫
ϕ∗(γ1)

η(x ◦ ϕ−1, y ◦ ϕ−1) =± CDE((x ◦ ϕ−1) � (y ◦ ϕ−1)),∫
γ2

η(X,Y ) =CDE((X) � (Y )).

Now, combining with Proposition 10, we conclude the proof of Theorem 1.

8. Conclusion

We have proven a new formula for the Mahler measure of a Weierstrass form.
This particular polynomial seems to be the first formula to be proven in the family
Fk. Boyd [Bo98] actually considers Fk as part of a two-parameter family for which
he finds

m(y2 + kxy − x3 − bx)
?
=

1

4
log |b|+ rL′(E, 0).

The first term in the right-hand side appears because the family is nontempered
unless |b| = 1. It would be very interesting to prove other examples in this family
when |b| 6= 1. This would require a careful study of tame symbols.

The only method that we know for finding relationships in Z[E(C)]− is the
“parallel lines”method developped by Mellit in [Me]. However, this method does
not apply to what we did in Section 4. It would be desirable to develop a general
method that includes our current work.
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