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Equations for Mahler measure and isogenies

par MATILDE N. LALIN

RESUME. Nous étudions quelques équations fonctionnelles de la
mesure de Mahler de familles de courbes de genre 1 en utilisant des
isogénies entre les courbes. Ces équations ont le potentiel d’aider a
trouver des relations entre la mesure de Mahler et des valeurs spé-
ciales de fonctions L. Ces notes sont inspirées d’une présentation
de I'auteure aux < Cuartas Jornadas de Teoria de Numeros>>, a
Bilbao, 2011.

ABSTRACT. We study some functional equations between Mahler
measures of genus-one curves in terms of isogenies between the
curves. These equations have the potential to establish relation-
ships between Mahler measure and especial values of L-functions.
These notes are based on a talk that the author gave at the “Cuar-
tas Jornadas de Teoria de Nimeros”, Bilbao, 2011.

1. Introduction

The (logarithmic) Mahler measure of a nonzero polynomial P(z1,...,x,)
€ Clx1,...,zy] is defined by

1 1 . .
m (P(z1,...,2,)) :/0 /0 log |P (627”91,...,627”6") |61 ... d6b,.

Boyd [5] studied the family of two-variable polynomials P, (z,y) = = +
% +y 4+ % + a and found numerically that
1 1 L'(E(),0
(1.1) m<x++y++a>;((a)) aeNa#0,4
Z Y Sa
where s, is a rational number (often integer), and E,) is the elliptic curve
which corresponds to the zero set of the polynomial. When a = 4 the curve
has genus zero and a formula with a Dirichlet L-function is easily proved.
Boyd studied numerically several other families of curves, including the
following:

g(a) =m((1+2z)(1+y)(z+y) —azy),
n(a) ::m<:1:3—|—y3+1—oz:xy),
r(a)==m((1+z)1+y)(1+2z+y) —azy).



388 Matilde N. LALIN

At the same time as Boyd’s numerical results and analysis, Deninger [9]
made the connection between these formulas and Beilinson’s conjectures.
Parallel to this, Rodriguez-Villegas [15] made a more detailed analysis of
Boyd’s results in the light of Beilinson’s conjectures.

Since then, results in the direction of equations (1.1) have been proven for
m(a), g(a),n(a), and r(a) by Rodriguez—Villegas [15], Brunault [6, 7], Mel-
lit [14], and Rogers and Zudilin [18, 19]. For example, Rogers and Zudilin
proved in [18] that

24
’I?’L(8) = ﬁL(E24, 2),
3 4 10
9(4) = T (V32) = SL(Ex,2),

where Ej, denotes an elliptic curve of conductor k.

In all cases, the strategy consists on reducing or proving particular cases
of Beilinson’s conjectures.

Many efforts have been also devoted to establishing identities between
Mahler measures of different polynomials in the previous families. These
efforts originated as intermediate steps towards the proofs of the previously
discussed identities, and they led to results that are interesting in their own
right.

The first identity of such kind was proved by Rodriguez-Villegas [16]

m(y? 4+ 2zy +y — a® — 222 —2) = gm(y2+4xy+y—x3—|—x2),
by translating this to the language of regulators. Following the same tech-
niques, similar results were given by Bertin [2, 3], Touafek and Kerada
[23], Lalin and Rogers [13], Lalin [12], and Guillera and Rogers [10]. Some
of these proofs rely on functional equations involving m(«) or the other
functions.

Our goal here is to prove some old and new functional identities by
relating them to isogenies between the corresponding curves. Our results
are as follows.

Theorem 1.1. For p > 0, we have

2
(1.2) g(4p(1 +p)) +g (W) — 9 (2(1;?)> ’

and

2p? 414+p)\ (201 +p)? 2
<1'3)g<_(1+p)>+g< p? >_g< p >+g( p(1+p)>'

For |p| > 8, we have,

1 (p+4\ 4 [(p—2
4 9lp) = 3n ( p*/? ) 3" ( pl/3 ) '
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Equation (1.2) was originally proved in Theorem 6 of [18] for % <
p < 1 while equation (1.4) is formula (2.27) in Theorem 2.4 of [13], where it
was proved for |p| sufficiently large. Equation (1.3) seems to be completely
new.
p = —8 yields a limiting case in equation (1.4) that leads to
n(—=1) +4n(5) = 39(-8),

an identity known to Mellit [14].
We are going to prove such results by finding relationships between reg-
ulators via pull backs through 2— and 3—isogenies.

2. The relationship with the regulator

Let E/C be an elliptic curve. The regulator map can be defined by
r:Ky(E)®Q— H'(E,R)

{z,y} — {7—>/n(x,y)}
for v € Hi(E,Z) and !

n(z,y) = log|z|dargy —log |y|d arg
Here we think of H'(E,R) as the dual of Hy(F,Z). The function is well
defined because n(x,1 —x) = dD(x) (and therefore it is exact). Here

D(z) = Im(Lia(2)) + arg(1l — z) log|z|

is the Bloch-Wigner dilogarithm.

The last ingredient in this picture is Kao(FE). Under certain conditions
that are verified in our cases, we can think of Ks(E)® Q C K2(C(E))®Q
and

K> (C(E)) = A2C(E)* /{z & (1 — 7))
by Matsumoto’s Theorem.

Assume that E is defined over R. Because of the way that complex con-
jugation acts on 7, the regulator map is trivial for the classes in Hy(FE,Z)™,
the cycles that remain invariant by complex conjugation. Therefore it suf-
fices to consider the regulator as a function on Hy(E,Z)".

After the works of Deninger [9] and Rodriguez-Villegas [15], we write

(1) m(P) = o r({myhli@y).y = P, sl =yl = 1]

This is easily accomplished by Jensen’s formula.
We write E(C) =2 C/Z + 7Z and let § = a + br € E(C). Then Bloch [4]
defines the regulator function by a Kronecker-Eisenstein series

2 I
(22) R (8)=-2 %

& mne”

sin(27(an — bm))
(m7T +n)2(m7+n)’
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where g, is the imaginary part of 7. Then

2 [ n@.y) Aw = Re((2) o ().

Here the diamond operation ¢ : C(E)* @ C(E)* — Z[E(C)]~ is defined on
the divisors (z) and (y) as

(x)o(y) = Zminj(ai —b)).
for
(@) =) milai),  (y) = n;(by).
(See [15] for more details.)

Mellit follows the details of equation (2.1) for the families we want to
consider and proves, more specifically, that

eH - ER@ew) {2
(2.4) n(a) = —;L;R((l') > (y)) do = {1_2 iz Z ?:1 '

These results are listed in section 2.2 from [14]. Our coefficients are slightly
different because we use a different normalization for the ¢ operation.

3. Functional identities involving g(«) and n(«a)

3.1. The case of g(a). Recall that the family that defines g(«) corre-
sponds to I'y(6). The following form of the equation will be more convenient
for our computations:

(x+1)y* + (2% + (2 — @)z + Dy + («* + 2).

If we let k = 2 — «, then we obtain the Weierstrass form

(3.1) V2= X(X?+ (k> —12)X — 16(k — 3)).
The change of variables is given by
X — _41‘(%’—}—]4—{—1)’
Yy
v - _43:(2xy+4y—k:y—|—2x2+x/~c+k—2)
y Y
Y —(k-2)X

2(X 1 4(k — 3))

XY —4(k—1)(k—3)Y + (3k — 8) X% 4+ 4(k — 3)*(k + 2)X — 32(k — 3)?
v= (X +4(k—3)(Y — (k—4)X —8(3—k)) '
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This family has always a point of order 6 which we will denote by
P = (403 k), 4(3 — k)(2 — k)
in the (X,Y) coordinates. Then 2P = (4,4(2 — k)), 3P = (0,0), 4P =
(4,4(k — 2)), and 5P = (4(3 — k), —4(3 — k)(2 — k)). Sometimes, when
working with more than one curve at the same time, we will write P, to
specify that we are discussing the P from the curve with parameter a.
The divisors of z and y are supported in the torsion group.
() = ((3P) 4+ (4P) + (5P) — 30) — ((P) + (5P) — 20)
= (3P)+(4P) - (P) - O,
(y) = ((4P) +4(5P) — 50) — ((P) + (5P) — 20) — ((2P) + 2(5P) — 30)
= (4P) + (5P) — (P) — (2P).
Applying the diamond operation, we have
(z) o (y) = —6(P) — 6(2P).
We are going to consider identities involving the parameter ag = 2(14p)*

This particular curve F has, in addition to the group generated by

2(1+p)2
p

P, two more points of order 2, namely @ = (—4p(p + 2),0), and 3P+ Q =
(—74(1;521)),0). Then P + Q = (—4(2p +1), 8(2p+1)(17p2)> and 2P + Q =

2

(_4(p+2) 8(p+2)(1fp2))
p 7 P’ ' _

Now set X = X2(k —2)+4 and Y = Y4(k — 2). We have,

1722()‘(]{;2+1> <X2+k;2)‘(+1>.

We consider some specific values for k.

Fork =2 — 2(1+p)? — _2(p*+p+1)
D D '
2
172:<—(1+p))_(+1><)_(2 P+ X+1>
p b
:( (1+p)X+1>(X p)<)‘(—1>.
p p

For k =2 — 4p(1 + p)
V2= (=2p(1+p)X +1) (X2 =20 +p- )X +1).

For k = 2 — 204p)
P

}72:<—2(1pjp))_(+1) <X2+2(p2_p_1))_(+1>.
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We can explicitly write the isogenies at the level of the Weierstrass mod-
els. By using the well-known isogeny of degree 2 (see for example [8], chapter
14, or [20], page 74, example 4.5):

¢ {E: Y2 =X(X?>+aX +b)} = {E:§* = X(X? - 2aX + (a® — 4b))}
given by

Y2 Y(b— X?)
(&Y) = <X2 X
(as always, we require that a_2 —4b #£0).
We have, in terms of (X,Y),

¢l : E2(1+p)2 — E4p(1+p)) d’? : E2(1+p)2 — E4(1;p)a
p p p

X((14+p)X —2) Yp((1+p)X2 = 2p(1+p)X + 2p)

o (7] 2(X-p) 2(X -p)’ ,
¢2'(X 37>—> X((1+p)X —2p) }7((14‘]?))_(2—@)_(4_2)
; 2(pX'—1) ’ 2(;0)_(—1)2

Let us write oy = 4p(1 + p) and ay = %. We have

¢1(Pa0) - Poqa ker(¢1) == {Q(Xoa an}a
(b?(Pao) = Paza ker((b?) = {an + 3Pa07 an}'
Using this, we find that

(Tar ©91) © (Yo, 0 1) = —12((Pag) + (2Pag) + (Pag + Qag) + (2FPag + Qay)),

and

(xa2 ° ¢2) < (yOéQ o ¢2) = _12((Poéo) + (2P010) - (Poéo + an) - (2Pa0 + an))'
These computations imply that

1R(ao) ((zay © 1) © (Yo, © P1)) + %R(ao) ((Tay © 92) © (Yay © $2))

2
= 2R(a4) ((Tag) © (Yao)) -

It is proven in [14] that the integration path for the regulator is [0, 7] for
a > 0. It is easy to see that ag > 8 for p > 0,p # 1. Also, T € iIRif 8 < «
and 7 € % + iR if 0 < ap < 8. If the periods are {wy, w2} with w; € R, we
obtain that P, corresponds to %wl (for 0 < @) and Qq to sws (for 8 < a).
Now suppose that p > 1. Then a1 > 8 and as < 8. We notice that the path
[0, To,] is sent to [0,27,,] by ¢1 (respectively {0, 2 (Ta2 - %)} by ¢2). Thus

Riay) (Tar) © Wan)) = 3R(ag) (Tay © 1) © (Ya, © ¢1)) and similarly for as.
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Therefore

R(a1) ((xal) © (yal)) + R(az) ((:ECQ) < (yaz)) = 2R(o¢g) ((xao) < (yao)) )

which proves equation (1.2):

9(4p(1+p)) +g (4(1; p)> =2g <W> :

p

Notice that exchanging p by % will only exchange the order of the terms in
the left, and that the equation is trivially true for p = 1. Therefore, it is
valid for p > 0.
We now consider the following isomorphisms,
P1 2E(2(1+p)2) %E(_Ly 2 2E<2(1+p)2> —>E< 2p2 ),

p(1+p)

P P T 0+p
given by
X +4p2+p) Y )
. X,Y — 9 )
o ) = (SR
2 3
pX +4(2p+1) p°Y
(X,)Y) — ,
£ (%) ( PSRN PR
Let 51 = _p(12+p)’ and 3o = ) Then

901(2Pao + an) = PBU
‘PZ(an - ao) PB2'

This means that

(28, 0 p1) 0 (ys, © sol) —6(2Pay + Qug) — 6(—2Py,)
—6((2Pa, + an) (2Pay)),
(g, © p2) © (Y, © st) ~6(Qag — Pay) — 6(—2Py,)
= 6((Pa0 + Qap) + (2Pay))-

This translates into
1
R(ao)((‘rﬁl © @1) < (yﬁ1 © Qpl)) + QR(Olo)((‘TOéQ © QSQ) < (yaz o (Z)Z))
= R(ag)((xao) < (yom)) + R(Ozo)((x52 o 902) < (yﬁz © 802))'
Using that Ra,) (ZTay) © (Yas)) = 3R(ag) (Tay © $2) © (Yay © ¢2))

R(ﬁl)(('xﬁl) © (yﬁl)) + R(ocz)((xfm)  (Yan))
= R(ao)((xao) © (yao)) + R(ﬁz)((xBQ) © (y,BQ))'
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At the level of Mahler measure, this equation becomes, for p > 0,

2 A0+p)\ _ (20+p)?*\ [ 2p°
_g<_p(1+p)>+g< p? >_g< p ) g( (1+p)>’

which concludes the proof of equation (1.3).
In addition, notice that combining both (1.2), and (1.3), we also conclude

2 2(L+p)?\ 2p?
—g (—p<1+p)) +g (p > =g(p(l1+p))—yg (—(1+p)> :

3.2. The case of n(a). Recall that n(«) corresponds to the Hesse family:

x3—|—y3+1—aa}y.
If we let a = %, a Weierstrass form is given by
Y?=X%-27X% 4 216(1 — a®) X — 432(1 — a®)?,

where the change of variables is given by

12(a®>—1)2 36 (a3 —1) (y—1
xo_ 2@ =bg y =30 -1
5+y+1 E—Fy—i—l
6aX 3X +36(a®—-1)+Y
y:

33X 436(a3—1)—Y’ 3X +36(a3 —1)—Y"

We have the following points of order 3 over Q(a):
Q = (0,12(1 — a)V/3i),
A= (6(a—1)(—(a+2)+aV3i),18a(a — 1)(2a + 1 + V/31)),
B = (6(a—1)(—(a+2) — aV/3i),18a(a — 1)(2a + 1 — V/3i)).
These points satisfy Q + A = B.
We proceed to compute the divisors of x and y:
(z) = ((Q) +(-Q) —20) = (A - B) + (4) + (B) = 30)
= (@) +(-Q)+0—-(-A—-B)—(4)—(B),
(y) =((A+B)+ (=4) +(-B)) = (A= B) + (4) + (B)).

The diamond operation yields
() o(y) =2(Q —A—B)+2(Q+A)+2(Q + B) —2(Q + A+ B)
—2(Q— A) —2(Q - B) — (A+ B) — (24) — (2B) — 2(~B)
(=A) —2(A+B)—2(A+ B)+2(A)+2(B)
—9(A+ B) +9(A4) + 9(B).
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Notice that the Weirstrass equation can be written as
Floy: Y? =X —27(X — 4(1 — a*))*.

Thus, for a = 51;/3, we obtain

9 2
Fro, :Y2:X3—27<X—4(1— 7p3>) .
) (b —2)
p

For o = pzié, we get

2

27p?
F Y2=X3 27| X —4(1- )
(&%) ( ( <p+4>3>>

We now go back to the g(«) family from equation (3.1) with o = p:
YZ2=X34(p® —4p—8)X?+16(p+ 1)X.
Ifwelet X = X(p—2)2+4andY =Y (p—2)3,

_ _ _ 4]9 2
E,,:Y?=X3 <X ) )
(p) + + (p— 2)3

We now use the degree-3 isogeny (see Top [22])
Y {E:Y?=X>+a(X —b)?} = {E:Y?= X% —27a(X — 4a — 27b)%}

given by
3(6Y2 + 6ab® — 3X3 — 2aX?) 27Y(—4abX + 8ab? — X3)
We find
1/)1:E(p) —)F(ﬂ)
pl/3
Py e (X Y) —
2 96p% 3 2 16p 128p2  +3
3(6Y + oy — 3% ZX) 27Y(( B X + 22y X)
X2 ’ X3 '

+4

In order to obtain F/ ) we need a degree 6 isogeny. Thus we apply
p2/3

first the usual 2-isogeny

¢3:E( —>E(

4p2 2
Y2=X3+ X
) +< +(p+4)3> !
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(p—2)* — 4p)

+4)(p +4)?

p— 2 (16(p+ 1) — (X(p— 2% +4) >>
(X(p—2)2+4)*(p+4)3 ’

and then the 3-isogeny that we have just described

(p—2)°X(X
(X(p—2)
(

9

qbg : (X,}_/) — (

¢2:E(%8) —)F(p+4).

2273

1/12 : (X Y) —
(3(6Y2 + B0 3X3 - 2X%) 27V (A X 4 128 XS))

(p+4)° (p+4) (p+4)
X2 ’ X3

Combining both isogenies, we obtain

¢2°¢33E<p)—>F(p+4)-

2/3

Let us write v, = 1 /3 and vy = pj/:,, It follows that

Yi1(A) = Ay, ¥1(B) = By, ker(vn) = (25,)

for some A, B of order dividing 9 in E(). Since the image of 3A is 3A,, =
O,,, we conclude that 34 = O,,2P, or 4P, (and similarly for B). From
the formula, it is easy to see that the preimage of @, (given by B — A,
B — A+2P, B— A+ 4P,) are points of order 3 (see, for example, [21],
page 40, point (c)). Then the 3-torsion group (over the algebraic closure) is
generated by 2P, and B — A. From this, we conclude that 34 = 3B = 2P,
or 4P,. Using thlS information, and the divisors (x, ) and (y,,) in F' ( - ) ,

173
we can compute (2, ©11) ¢ (y, © ¢1). We find that
(25, 0 %1) @ (yy, 0 91) = 27((A) + (A +2P,) + (A + 4P,)
+ (B) + (B+2P,) + (B+4P,) — (A+ B)
—(A4+B+2P) — (A+ B +4P))).

p+4
p2/3

Since the relation between F'/ and F ( > is given by p — —7, it

P

is also clear that 1y o ¢3(A) = A and analogously for the B’s. This is
summarized as follows:

2 0 p3(A) = Ay, by 0 ¢3(B) = B,,, ker(ihy 0 ¢3) = (B,).
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Thus
(T4, 0 P20 P3) © (Yy, 0 P20 P3) =
54((A) + (A+2B,) + (A +4Py) + (B) + (B + 2P,)
+(B+4P)) — (A+ B) — (A+ B+2P,) — (A+ B +4P,)
+(A+P,)+ (A+3P,) + (A+5P,) + (B+ Py) + (B +3P,)
+(B+5P) — (A+B+P,)—(A+B+3P) — (A+ B+5P)).

Now consider 17;1 oty : Ey) — Ep,) corresponding to multiplication by 3
We have that

3)(£(P, — A)) = B, [8(£A) =2P,, ker(3]) = (2P, A- B).
Here the sign 4 corresponds to the sign of 34 = +2P,.
Thus
(zp o [3]) o (ypo3]) =

F54((A) + (A +2P,) + (A +4P,) + (B) + (B + 2P,)
+(B+4P,) — (A+B)— (A+ B+2P,) — (A+ B +4P))
+(A+P,)+(A+3P,) + (A+5P,)+ (B+ Py) + (B+3P,)
+(B+5P,) — (A+B+P,)— (A+B+3P,) — (A+B+5P,)).

These computations show that

AR ) (2, 0 11) © (Y1 0 Y1) = Ry (24, 092 0 03) © (45, © Y2 © ¢3))
= FR(p) ((zp o [3]) o (yp o [3])) -
The integration path for the regulator in the family F' is proven in [14] to
be [0, 7] while 7 € iR for & > 3 and [0, 27 — 1] while 7 € J +iR for v < —1.
Notice that p > 8 implies that 71,72 > 3. Now ¢3 sends [0, 7] to |:O,T—;5}

(as it annihilates 3P which is related to the real period) but changes its
orientation. Therefore, R<,g)(( —s)o(y= s)) = =R ((z=s0tha)o(y—s orp)).
p p

By the same idea, R(,,)((7+,)© (?Jm)) R, ((5671 011) 0 (Y, 091)), since 1
annihilates 2P, and thus R(.,)((74,)0(yy,)) = —R(p) ((24,092003)0(y, 0120
o (yp)

Rp)
#3)). Similarly it is clear that R, ((zp) o (yp)) = % » ((zpo[3]) o (ypo[3])).
Therefore, we obtain,

(3:2) 4Ry ((x31) © (Y3n)) + Bipp) ((292) © (42)) = F3R) (2 © (yp))-

If we take p < —8, we have that v1 > 3, v» < -1, and
0< _78 < 1. A similar analysis on integration paths and orientations yields
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Ry () © (Yy5)) = SRy (w4, 0 P2 0 $3) © (Y, © Y2 0 B3)), and

(3.3) 4R(71)(($V1) O (Yy)) — 2R(72)(($72) 0 (Yy)) = ¢3R(p)(($p o (Yp))-

Combining equations (3.2) and (3.3) with equations (2.3) and (2.4), and
taking into account that the terms must all be positive, we get equation

(1.4):
4 (p-2\ 1 (p+4\
3n(p1/3 ) +3n<p2/3 ) =9

This concludes the proof of the result.

4. Conclusion

We have proved some functional identities involving Mahler measures
of families of genus-one curves by using relations between regulators and
isogenies. This is not the only method to prove such formulas, which can be
also attacked by means of hypergeometric functions. It would be interesting
to explore other proofs and see if the conditions on the parameter p can be
relaxed.

It would be also interesting to see if these formulas can be used to prove
new formulas between Mahler measures and special values of L-functions
of elliptic curves at s = 2.
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