APPLICATIONS OF MULTIZETA VALUES TO MAHLER MEASURE

MATILDE LALIN

ABSTRACT. These notes correspond to a mini-course taught by the author during the program “PIMS-SFU
undergraduate summer school on multiple zeta values: combinatorics, number theory and quantum field
theory”. Please send any comments or corrections to the author at mlalin@dms.umontreal.ca.

1. PRIMES, MAHLER MEASURE, AND LEHMER’S QUESTION

We start our study by discussing prime numbers. First consider the sequence of numbers M,, = 2" — 1
for n natural. We may ask, when is M,, prime? We can write

(2’!’8 _ 1) — (27 _ 1)(2(8—1)7’ + 2(8—2)7‘ + . + 27' + 1)
This implies that M, | M,s and we need n prime in order for M,, to be prime. Notice that My = 3, M3 =
7, Ms =31, M7 — 127, but Mp; = 211 — 1 = 2047 = 23 x 89. Therefore the converse is not true.
The primes of the form M, are called Mersenne primes. It is unknown if there are infinitely many of
such primes, or if there are infinitely many M, composite with p prime. The largest Mersenne prime known

to date is with p = 57,885,161 (it has 17,425,170 digits). The search for large Mersenne primes is being
carried by the “Great Internet Mersenne Prime Search”: http://www.mersenne.org.

Exercise 1. Let a,p be natural numbers such that a? — 1 is prime, then show that either a =2 or p =1

FEzxercise 2. Let p be an odd prime. Show that every prime ¢ that divides 2 — 1 must be of the form
q = 2pk 4+ 1 with k integer.

Looking for large primes, Pierce [Pil7] proposed the following construction in 1917. Consider P € Z[x]
monic, and write

then, we look at

The «; are algebraic integers. By applying Galois theory, it is easy to see that A, € Z. Note that if
P =1z — 2, we get the sequence A, = 2™ — 1, the Mersenne numbers. The idea is to look for primes among
the factors of A,,. The prime divisors of such integers must satify some congruence conditions that are quite
restrictive, hence they are easier to factorize than a randomly given number.

Ezxercise 3. Prove that A, is a divisibility sequence, namely, if n | m, then A,, | A,,.

Then we may look at the numbers

A—T, p prime.

Pierce and Lehmer observed that the only possible factors of A,, are given by prime powers p¢ of the form
nk 4+ 1 for some integer k and 1 < e < deg (P). It is then natural to look for P that generate sequences that
grow slowly so that they have a small chance of having factors. Lehmer [Le33] studied wAA":lll, observed that
" 1] f o] if|a] > 1,

o { 1 if|al <1,

lim
n—oo |a” — ]_|

and suggested the following definition:
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Definition 1.1. Given P € Clz], such that
P(z) = aH(a: — ;)

%

define the (Mahler) measure * of P as
M(P) = o] [ max{1, las]}-
The logarithmic Mahler measure is defined as
m(P) = log M(P) =log|a| + > log" |ai],

where log™ |a| = log max{1, |a|}.
Ezxercise 4. Prove that for any n € Z,

m(P(z)) = m(P(z")).

Ezxercise 5. Prove that if P(z) = agz® + - -- + ag, then |a;| < (f)M(P)

As M(P) measures the growth of the sequence I?A"Jrlll,

not grow: When does M(P) =1 for P € Z[x]? We have

it is natural to ask about the sequences that do

Lemma 1.2. (Kronecker, [Kr57]) Let P = [[,(z — ou) € Z[z], if |a;| < 1, then the «; are zero or roots of
the unity.

Proof. Consider the polynomial
d
Pu(@) = [J(z - a?).
i=1
The coefficients of P,(x) are symmetric functions in the algebraic integers o, so they are elements of Z
(all the conjugates of each «; are present as roots of P(x), since the coefficients are rational). Each of the
coefficients is uniformly bounded as n varies, because |a;| < 1 and the set {P,},cn must be finite. In other
words, there are n; # no for which

P, =PF,,.

That means,
{7, .. o'y ={a]?, ..., a?}.

Thus, there is a permutation o € S; such that

a;t = a;’?i).
If o has order k, we get,

k k
Oé?l — a?27

and «; is a root of
k k_ k
™ ("™ —1) =0.

This shows that each «; is either zero or a root of unity. ©®

*The name Mahler came about 30 years later after the person who successfully extended this definition to the several-variable
case.
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Ezercise 6. (a) Give examples to show that in general a polynomial in Z[z] may have zeros of absolute
value one that are not roots of the unity.
(b) Show that a monic example of (a) can only occur in degree at least 4.

By Kronecker’s Lemma, P € Z[z]|, P # 0, then M(P) = 1 if and only if P is the product of powers of =
and cyclotomic polynomials. This statement characterizes integral polynomials whose Mahler measure is 1.
Lehmer found the example

m(z' + 2% — 2" — 2% — 2% —2* — 2% + 2 +1) = log(1.176280818...) = 0.162357612. ..

and asked the following (Lehmer’s question, 1933):
Is there a constant C > 1 such that for every polynomial P € Z[x] with M(P) > 1, then M(P) > C?
Lehmer’s question remains open nowadays. His 10-degree polynomial remains the best possible result.

Ezercise 7. With the help of a computer find the Mahler measures of the following polynomials

(a) 20+ 2% — 2" — 28 — 2% — 2t — 23+ o + 1,

(b) 210 — 2% 4 2% — 2t + 1,

(c) 2M 4 21t — 210 — 27 — g4 4 23 41,

(d) o' — 212 + 27 — 22 + 1.

Examples of polynomials with small Mahler measure may be found with the search engine from Moss-
inghoff’s website [M]: http://www.cecm.sfu.ca/ mjm/Lehmer/search/.

Ezxercise 8. With the help of a computer investigate the sequences A,, for 21042° —27—26 — 25 —2* 234241
and for 3 — z — 1. Challenge: Find v/Aygs for the first polynomial and Asgsy; for the second polynomial
and check that they are prime numbers. Hint: it may be necessary to verify that the A,, satisfy a recurrence
sequence as proved in [Le33], section 8.

The following definiton will be used often in the notes.
Definition 1.3. Let P(z) € C[z] be a nonzero polynomial of degree d. We set
P*(z) := 29P(z71)

the polynomial with the same coefficients as P, but in reverse order and conjugated. We say that P is
reciprocal if P = £P*. Otherwise, we say that P is non-reciprocal.

We list here some important results in the direction of solving Lehmer’s question.
Theorem 1.4. (Breusch [Br51], Smyth [Sm71]) If P € Z[x] is monic, irreducible, non-reciprocal, then
M(P)> M(2® —x—1) =60 = 1324717 . .
Corollary 1.5. If P € Z[z] is monic, irreducible, and of odd degree, then
M(P) > 6.
The most general result with a bound involving the degree is given by

Theorem 1.6. (Dobrowolski [Do79]) If P € Z[z] is monic, irreducible and noncyclotomic of degree d, then
loglogd 3
M(P)>1 —_
(=t ( logd )

where ¢ is an absolute positive constant.

Theorem 1.7. (Schinzel) If P € Z[z] is monic of degree d having all real roots and satisfies P(1)P(—1) # 0
and |P(0)| =1, then

d
1+v5)\°
2

M(P) = (
with equality iff P is a power of x® —x — 1.

For the proof, we need the following



Ezercise 9. For any d > 1 and y1,...,yq > 1 be real numbers, prove that

=1 (ga—1) < ((gr---ya)/* = 1)%
Hint: This is a special case of Mahler’s inequality. Apply the arithmetic-geometric mean inequality to

yi—1 Yya—1 1 1
{ o }andto{yl,...,yd .

Proof. (Theorem 1.7) Consider
d
E=]]lei -1l
i=1

Remark that E > 1 since P is monic and «; # +1. Note that
1
MP)= ][ loil = 54—

lai|>1 Hlai\<1 |ovi

Thus, we may rewrite

= Tl =1 IT to?=11= gy T1 lor* =11 T le =11

lai|<1 lai|>1 la;|<1 Jos|>1
We apply Exercise 9 in order to obtain
1/d d
1 -2 2
ESM(P)Q H a; H o -1
[ | <1 [avi|>1
1 d
= 3rpp (MP) 1)
= (M(P)* ~ M(P) /)
Since E > 1,
(1.1) M(P)¥4 — M(P)~2/4 > 1.

Since M(P) > 1, this implies that M (P)?/¢ > 1+T\/g and we obtain the desired result. ®

FEzxzercise 10. Prove the last assertion of Theorem 1.7.

Ezercise 11. What happens if we relax the condition of |P(0)| = 17

Theorem 1.8. (Bombieri, Vaaler [BV87]) Let P € Z[x] with M(P) < 2, then P divides a polynomial
Q € Z[x] whose coefficients belong to {—1,0,1}.

The last result and Theorem 1.4 suggest that if we want to beat Lehmer’s 10-degree polynomial, one
should search for reciprocal polynomials having coefficients in {—1,0,1}.
The most general result in terms of families is given by

Theorem 1.9. (Borwein, Dobrowolski, Mossinghoff [BDMOT]) Let D,,, denote the set of polynomials whose
coefficients are all congruent to 1 modulo m. Si f € D, has degree d and no cyclotomic factors, then

1
>em (1=,
m{f) = e ( d+1)
where co = (log5)/4 and ¢y, = log(vVm? +1/2) for m > 2.

As a final comment, we remark that Mahler measure is related to classical heights. Generally speaking,

a height is a function that measures the size of a mathematical object. For example, the absolute value | - |

measures the size of complex numbers. Another less immediate example is given by the canonical height

defined in Q as follows. If § is a rational number written in lowest terms (in other words, (a,b) = 1),

then the height of ¢ is defined as max{]al,|b|}. This definition is what allows us to disntiguish between the
4



number 2 and the number 1.9999999999 = 12.999.999.999. " hile the first has height 2, the second one has

10,000,000,000 *
height 19,999,999,999.

For a polynomial P(z) = agz? + --- 4+ a;x + ag € C[x] define

0<i<d

d
H(P) = max {lai|}, L(P)=_lail,
i=0
the height and the length of P.
Ezxercise 12. Prove the following inequalities:

(a) L(P) < 2¢M(P).
(b) H(P) < 2'=¢M(P).

Mahler [Ma62] considered this construction because he was looking for inequalities of the classical poly-
nomial heights (such as L(P) or H(P)) between the height of a product of polynomials and the heights of
the factors. These kinds of inequalities are useful in transcendence theory. M (P) is multiplicative (that is,
M(PQ) = M(P)M(Q)) and comparable to the typical heights, and that makes it possible to deduce such
inequalities. While investigating this in several variables, he discovered the generalization that we explore

in the next section.

2. MAHLER MEASURE IN SEVERAL VARIABLES

We will be concerned mostly with the Mahler measure of multivariable polynomials.

Definition 2.1. For P € C[ml ..., 1% the logarithmic Mahler measure is defined by

rn

/ /log|P i €20 dg ... db,

drq dz,
—_— log | P e —
(27”) / N

The Mahler measure is defined by
M(P) := e,

It is possible to prove that this integral is not singular and that m(P) always exists.

appeared for the first time in the work of Mahler [Ma62].
The relationship between Definitions 2.1 and 1.1 is given by the following.

Theorem 2.2. (Jensen’s formula) Let o € C. Then
1 .
/ log |€2™ — a|df = log™ |
0

where log™ x = logmax{1,z} for z € Rg.

Proof. First assume that || < 1. We have that
1 ' 1 _
/ log |2™% — a|df = / log |1 — ce™ 2" |dp
0 0

1
:/ log |1 — ae®™7|dr
0

5
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where we have done 7 = —6. We have

1
/ log |1 — ae*™"|dr = Re log(1 2””)d7‘>
0

(I
ne [ (OO - )
(E20)

We have exchanged the integral and the infinite sum, but this is justified since the sum is absolutely conver-
gent.
Now assume that |o| > 1. Then, by the previous argument,

1 1
/ log |€2™ — a|df = log|a +/ log|1 — a~te?™|df = log |a/.
0 0

Finally, we are left with the hardest case, |a| = 1. After multiplying by a~!

Writing |1 — e2™| = 2sin(76) for 0 < 0 < 1, we have

, we may assume that o = 1.

1 1
(2.1) / log |1 — e*™|dh = / log sin(76)df + log 2.
0 0

Let I = fol log sin(7w@)df. The integral exists since sin(78) ~ w6 for small 6.
We write sin(r6) = 2sin (Z¢) cos (Z2). Thus,

1 1
I:log2+/ logsm( )d@—i—/ logcos( )d@
0

By making the change 7 = 0/2 in the first integral and 7 = 1/2 — 6/2 in the second one, we obtain,

1

1/2
I=log2+ 4/ log sin(n7)dr = log 2 + 2/ log sin(n7)dr = log 2 + 2I.
0 0

From this, I = —log2 and we obtain the desired result by combining with equation (2.1). ®
The multivariable Mahler measure is still multiplicative, meaning that for P,Q € C[zy,...,x,], we have
m(P - Q) = m(P) +m(Q).

Proposition 2.3. Let P € Clz1,...,x,] such that a;, ...
d; in x;. Then

(a)

is the coefficient of xlf ...z and P has degree

sin n

|aiy,...in] < <d1> (d">M(P)
11 in

M(P) < L(P) < 24it+dupr(p)

(b)

(c)
((dy + 1)+ (dn + 1)) V2M(P) < H(P) < 2=/ (P)
where

n dj
HP)= _ max  {lai,. [} L(P)= SO lai. il

j=1i;=0



Proof. [(c), lower bound] By an inequality of Hardy—Littlewood-Pdlya,

1 1
M(P) < (/ / |P(e2m‘91,...,627”'9”)|2d91...d9n>
0 0

Parseval’s formula implies

1/2

<(dy+1)...(dp +1)H(P)?.
®

Ezxercise 13. Prove the rest of Proposition 2.3

Ezercise 14. If P € C[z1, 2] has a constant coeflicient a that in absolute value exceeds the sum of the
absolute values of all the other coefficients, prove that m(P) = log|al.

FEzxzercise 15. Let
P(x) = Zcmxm € Clzy, ..., zn),

where x™ = x]"* ---z"". Let A be an n X n integer matrix with non-zero determinant, and define

P (x) = ZcmxAm.

Prove that
m(P)=m (P(A)> .

It is also true that m(P) > 0 if P has integral coefficients.
In addition, an analogous of Kronecker’s lemma is true.

Theorem 2.4. (Smyth [Sm82]) For any primitive polynomial (i.e., the coefficients have no nontrivial com-
mon factor) P € Z[zT, ..., xF], m(P) is zero if and only if P is a monomial times a product of cyclotomic

polynomials evaluated on monomials.
Let us also mention the following result:
Theorem 2.5. (Boyd [Bo81], Lawton [La83]) For P € Clx1, ..., z,]

lim ... lim m(P(z,z,... 2%)) =m(P(z1,...,x,)).
ko—o0 ky,—00
It should be noted that the limit has to be taken independently for each variable. (Writing this properly
would take half a page.)

Ezxercise 16. Explore the limit of Theorem 2.5 in the case of 1 + x 4+ y. Namely, compute several values of
m(1l + z + 2™) and compare them with the value of m(1 + = + y) = 0.323065947 . . ..

Because of the above theorem, Lehmer’s question in the several-variable case reduces to the one-variable
case. In addition, this theorem shows us that we are working with the “right” generalization of the original
definition for one-variable polynomials.

The formula for the one-variable case tells us some information about the nature of the values that Mahler
measure can reach. For instance, the Mahler measure of a polynomial in one variable with integer coefficients
must be an algebraic number.

It is natural, then, to wonder what happens with the several-variable case. Is there any simple formula,
besides the integral? (Un)fortunately,’ this case is much more complicated and we only have some particular
examples. On the other hand, the values are very interesting.

fIf it were that easy this area would not be so interesting!



3. EXAMPLES

We show some examples of formulas for Mahler measures of multivariable polynomials.
e Smyth [Sm82]

3v3
(31) m(w + Yy + 1) = FL(Xf?nz) = L/(ng, _1)7
where
ooX (n) 1 if n=1 mod 3
L(X,g,s)zz 738 and x_s(n)=¢ —1 if n=-1 mod 3
=1 0 if n=0 mod 3

is a Dirichlet L-function.
e Smyth [Bo81]

(3.2) m(m+y+z+1):ﬁC(3),
where
1
((s) = s
n=1
is the Riemann zeta function.
e Boyd & L. (2005)
1 21
m(z? +1+ (z+ Dy + (z —1)2) = ;L(x,4, 2) + 8?4“(3).

e L. [La03]

(e (152) (1522) 0-0) - B

e In fact, there are known formulas ([La06]) for

m<1+x+(1;2)...(1;zz>(1+y)z>.

e Rogers & Zudilim [RZ11]

1 1 15
— Z4+1) =-"=L(E5,2) = L' (E5,0
m(x+x+y+y+> 12 (E15,2) (E15,0)

where Fj5 is an elliptic curve (of conductor 15) that happens to be the algebraic closure of the zero
set of the polynomial.
Roughly speaking, an ellitic curve is the zero set of a polynomial of the form

Y2=X3+AX+B
where 443 + 2782 # 0.

The polynomial x + % +y+ i + k generally corresponds to an elliptic curve under the following
transformation

kX -2y EX 42V
Toax(x—1n YT aoax(x 1)

k2
Y2X<X2+<42)X+1>.

(It is then easy to eliminate the term of X? by completing the cube.)
The L-function of an elliptic curve is a function similar to the Riemann zeta function with coeffi-
cients that encode the number of points of the curve over finite fields.
e Boyd (2005)
m(z + (z+ 1)(y + 1)) = 2L’ (B3, —1).
The question mark stands for an identity that has been verified up to 20 decimal places, but for

which no proof is known.
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e Examples with K3 surfaces, mostly due to Bertin. These includes polynomials in the family = + % +
y+o+z+ itk
How do we get such formulas? Some of them are very difficult to prove. To be concrete, we are going to
show the proof of the first example by Smyth (from [Bo81]):
Proof. (Equation (3.1)) By Jensen’s formula,

) 1 27 /3 )
m(l+z+y) = /nb/ bgu+e”+dwﬁds_g—l/ bgmwﬂﬂ+éﬂJ}ﬁ::Za/ log |1+-e€"|dt.

—27

Now we write

it — (=D
log |14 €| = Re —e"
gl | él .
The series does not converge absolutely but it converges uniformly in ¢t € [—27/3,27/3], since we are far

from the singularity at t = £x. It follows from

27‘(‘/3 . 2 2 3
/ emtdt = Zsin 0 = £X,g(n)

—21/3 n 3 n

that
V3 B X- 3 o~ X-3(2n)

3.3 1 — — — —
(3:3) m(l+z4y) = WT; 27T nz_: — (2n)?
and use that x_3(2n) = x—3(2)x-3(n) = —x—3(n) to obtain the initial formula. ©

Ezercise 17. Prove Smyth’s formula (3.2). Hint:

11
m(l—l—x—i—y—l—z):m(1+x+z(1—|—y))=/ / logmax{’l—l—e%wl‘,|1+62”02|}d91d92.
o Jo

Some of the formulas explored in this section can be proved and better understood by using polylogarithms.

4. POLYLOGARITHMS
Many examples should be understood in the context of polylogarithms.

Definition 4.1. The kth polylogarithm is the function defined by the power series
oo xn
Lij(z) =Y & @eC fal<1.
n=1
This function can be continued analytically to C\ [1, 00).
In order to avoid discontinuities, and to extend polylogarithms to the whole complex plane, several
modifications have been proposed. Zagier [Z91] considers the following version:

Ly () := Rey, Z”f (log || Lig_j(z) |

Jj=0

where Bj; is the jth Bernoulli number, Lip(z) = f% and Rey denotes Re or Im depending on whether k is
odd or even.

This function is one-valued, real analytic in P*(C) \ {0,1, 00} and continuous in P!(C). Moreover, L
satisfies very clean functional equations. The simplest ones are

1 _ _ _
(1) =0 L) = (1P )
There are also lots of functional equations which depend on the index k. For instance, for k = 2, we have
the Bloch—-Wigner dilogarithm,

D(z) :=Im (Liy(z)) + arg(l — z) log ||
9



which satisfies the well-known five-term relation

D(x)+D(1—xy)+D(y)+D( 1_y>+D<1_”3):o

1—2xy 1 -2y
The dilogarithm can be also recovered in terms of an integral.
6 oo .
. , sin(2nf)
—2/ log [2sint|dt = D(e*?) =y  ———2
More generally, recall the definition for polylogarithms.

Definition 4.2. Multiple polylogarithms are defined as the power series
k1, k2 k
. ity
Lin, .., (T2, T) = > TR e
0<ky<kp<-<hy, L 72 TR
which are convergent for |z;| < 1. The weight of a polylogarithm function is the number w = ny + -+ - 4+ ny,.
When n,, > 1 the above series converges for |z;| < 1. We can then find multizeta values by setting z; = 1:

Linl,,..,nm(lv ey 1) = C(nla DR 7nm)'

Ezercise 18. (a) Express Li,(—1) in terms of zeta functions.
(b) Express Li, (e?™/3) — Li, (e=27"/3) in terms of L(x_3,7n).
(c) What is Li, (¢) — Li, (—1)?

Definition 4.3. Hyperlogarithms are defined as the iterated integrals

Loy ng (@12 am 2 ) =
/ amil dt dt dt dt dt dt dt dt
O—o0-++0—O0 O—0+++ 0 —O0-+++0 O—O0+++0 —
0 t—a; t t t—ag 4 t—ay, t t
ni ne Nm

where n; are integers, a; are complex numbers, and

/”k+1 dt dt / dt, dty.
O+++0 = e
o t—b t=bp  Jo<hi<ostishn b T — by

The value of the integral above only depends on the homotopy class of the path connecting 0 and @, 41
on C\ {ai,...,amn}. To be concrete, when possible, we will integrate over the real line.
It is easy to see that,

. as Q a a
Inl,...,nm (al R O am—i—l) == (*l)lenl,...,nm <a?, ;z, ceey a m17 Z+1>
m— m
Ling o (@15 @m) = (=)L, (1.2 xm)_l P xr_nl :1)

which gives an analytic continuation to multiple polylogarithms. For instance, with the above convention
about integrating over a real segment, simple polylogarithms have an analytic continuation to C\ [1, 00).

Exercise 19. Prove the previous equations.

Ezxercise 20. Prove that



4.1. Applications of polylogarithms to Mahler measure. Many of the Mahler measure formulas can
be proved via polylogarithms. For instance, formula (3.3) may be rewritten as

1 T —2ms 1 : T : —2mi):
m(1+ 2 +y) = 5 (D(ET/) = D(e271%)) = — (Lig(2/%) — Lig(e2"15%))

Similarly, the Riemann zeta funcion arises as a special value of the polylogarithm:
((n) = Lin(1)

and this identity appears also in Mahler measure formulas.
Here is a more detailed example.

Theorem 4.4. For a € Ry,
m((1+ ) +a(l — 2)y) = —% (Lis (ia) — Lis (—ia)).

Proof. We apply multiplicativity of the Mahler measure and then make the change of variable z = €* and

notice that i—i = —jtan (g)
11—z
mm((1+2z)+a(l—2)y) = mm(l+z)+7m 1+a1+ Y
x
_ 1 n alfx dj
21 Jm 1+z| 2
[ 0
= 5/0 log™ |atan (2 ‘d@.
Now make w = #m, then df = 11‘;?132. The previous equation equals
atan b
/11 2 adw
— og w
0 W a1 1
1,1
d 1 1
= z/ & - — — | dw
0 w S w + a w — a
= i (12 (—Z : 1> — I (Z 1)>
a a
= —i(Liz (¢a) — Lis (—ia))
®
Ezxercise 21. Prove that for a € C*,
% (Liz(la|) — Liz(—al) la| <1,

m(l+x+ay +az) =
logla] + % (Liz(|a| ") = Liz(~la[™") la] > 1.

Ezxercise 22. Prove that
7
m((1+x1)(1+22) + (1 —21)(1 —22)y) = p((i)’)'

Polylogarithms play a crutial role in these type of formulas, relating Mahler measure to special values of
zeta functions and L-functions. These relationships provide examples of very general conjectures (Beilinson’s
conjectures) which play a central role in number theory. These statements include, for example, the Birch—
Swinnerton-Dyer conjecture, one of the seven Millenium Prize Problems posed by the Clay Institute with a
prize of one million dollars for the solution of each.

It is natural to wonder if these applications of polylogarithms to Mahler measure can be generalized. The
key ingredient here is the relationship that can be stablished from the integral to hyperlogarithms. Inspired
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by this, we will explore other types of integrals which should also fit into the statement of Beilinson’s
conjectures.
5. HIGHER MAHLER MEASURE

Definition 5.1. The k-higher Mahler measure of P is defined by

1 1
my,(P) ::/0 /O log" [P (2™, ... &> )| db; - - - db,.

In particular, notice that for k¥ = 1 we obtain the classical Mahler measure
m; (P) = m(P),

and
The simplest example of higher Mahler measure is with the polynomial P =1 — z [KLOO0S|:

Theorem 5.2. ([KLOO08]) We have,

mo(l—z) = DT

ms(l —2) = _%(3)7

my(1—1z) = 3C<2)2221c(4) _ 1;5

ms(l—2) = _15((2)4(32)+45g(5)’

mp(1—a) = 206(0)+180¢(3)" +8315<<2><<4> +15((2)°
= De@pe 2

and similar equations for higher indexes.

Before proceeding into the proof of Theorem 5.2 we recall some properties of the Gamma function

o
I'(s) ::/ tsle~tat.
0

Ezxercise 23. Prove I'(1) = 1 and that I'(s + 1) = sI'(s). Deduce that I'(n + 1) = n! for n positive integer.

We notice that
1 oo oo
r <) = / t=12e"tdt = 2/ e~ ds = /7,
2 0 0

where we have made the change ¢t = s? and used the Gaussian integral.
Let

1
B(r,s) :/ t" N1 — ) Ldt,
0
the Beta function.

Ezxercise 24. Prove that, whenever the integral for the Beta function converges,
L'(r)C(s)
L(r+s)

! 1Y a1 —u\
B(s,s :/ 51 1—ts_1dt:f/ ( ) ( > du,

#The relationship between higher Mahler measure and Beilinson’s conjectures is yet to be stablished. One of the motivations
to find examples of higher Mahler measure formulas is precisely the search of a precise formulation of this relationship.

12

B(r,s) =

Now,




where we have set t = HQ'“. This yields,

I I
ﬁ/ (1 — U2)s_1du = m/ (1 — u2>3_1du.
2 225-2 |,

—1

By setting v = u?, this equals

1 ! s—1,—-1/2 1 1
2%7_1/0(1—1)) v /d'l):2287_1.B 5,8 .

I(2s) = %F(S)I‘ (s + ;) = 225\/7?1F(5)F (s + 1) .

The above is called the duplication formula for T".
Finally, we state the Weierstrass product without proof.

Thus,

e

R (TR

n=1

where v = lim,, , (ZZ:1 % — log n) = 0.577216... is the Euler—Mascheroni constant.
Proof. [Theorem 5.2] To prove the above equalities one uses a construction by Akatsuka [A09]. We consider
the integral

1
Z(s;x—l):/ ‘62”9—1‘36&9.
0

(This is called the Zeta Mahler measure.) We first make the change t = sin” 76:

1/2
Z(s,x—1) 25+ / (sinmf)*do
0

25 1 s—1
= = | = (1 -tV

Thus, we obtain the Beta function

Il
3N
&
VR

Vo)
o |+
—
[N
N———

2 r(3) L (5+1) ’
and
b s
I(s+1)"'=¢* H (1—|— 7) e,
n=1



we obtain

0o 2
Z(s,x—1) = H 7(1+%)

<
(EERE 2
( (i

n=1
_ — (-1 -k _ 13\ k
= exp (), C(k)(2 1)s
k=2
— (—1)*(1 —21"F)¢(k
_ exp<z< (1 22 >>
k=2
The Zeta Mahler measure yields a Taylor series whose coefficients are given by mg(P).
2 my(z —1)
27’“ sf = Z(s,z—1)
k!
k=0
— (—DF(1 —27F)((k
_ exp<z< (1274 )Sk)
k=2
@)
Ezxercise 25. Prove that
(—1)FK!
my (1 — ) = > b1 ),

bi+---+bp=k,b;>2
where ((b,...,bs) denotes

1
C(b1,....bp) = Z B
Li<<lp 'L 7 %h

Hint:

log® [1 — 2] = (Relog(1 — 2))F — (;(bg(l —2) +log(1 — xl)))k
([ [ ) R O ([ ) ()

We know how to answer Lehmer’s question in the case of the higher Mahler measure.

k—j

Theorem 5.3. ([LS11]) If P(z) € Z[z] is not a monomial, then for any h > 1,

—

o\ h
(Lg) , if P(x) is reciprocal,
>
> ( .

Let P, (x) = “;—__11 For h > 1 fized,

mgh(P)

=

h
) , if P(x) is non-reciprocal.

lim mth(Pn) =0.
n— o0
Moreover, this sequence is nonconstant.

A natural generalization for the k-higher Mahler measure is the multiple higher Mahler measure for more

than one polynomial.
14



Definition 5.4. Let Py,..., Py € (C[l‘it7 ..., o] be non-zero Laurent polynomials. Their multiple higher
Mahler measure is defined by

w(Pr, ..., Py
/ / 10g ‘P 2#191 L 762‘”0”>| .. log |Pk (627ri91’ . 76271'1’0")

This construction yields the higher Mahler measure of one polynomial as a special case:

dby ---db,.

Moreover, the above definition implies that

m(P) - -m(P) =m(Pr,...,P)

when the variables of P;’s are algebraically independent.
The simplest example is this regard is, again, given by linear polynomials.

Theorem 5.5. ([KLOO08]) For 0 < a <1

2mi L
m(l—m,l—e’”o‘x):? o’ —a+—|.

Proof. Let A. =[¢,a —e]U[a+¢e,1 —¢]. By definition,

1
m(l —z,1—e*™z) = / Relog(1 — e2™?) . Relog(1 — e?(0+))dp
0

/ (_iimm) &

k=1

= Z /cos (27k0) cos(27l(0 4+ «))db

kl>1

1 1
+ — — cos 2kl — —cos2nl(0 + «) | db.
[y (2 feosamao) (32 om0

k=1 =1

N‘H

cos 27l(0 + a)) de

Because log |1 — ™| =
term approaches zero.

Notice that

log |2sin 76| ~ log [276] for 6 near zero, and [ log(Kx)dz — 0 as € — 0, the last

O(e) ifl=k,
/ cos(2mkd) cos(27l(0 + a))dl =
[0,1]\

=i otherwise,
and

1 1 cos(2rka) ifl =k,
/ cos(2mk6) cos(2ml(0 + «))db =
0 0 otherwise.

By putting everything together we conclude that

; 1 cos(2mka) w2 1
2 — — 2
m(l —z,1—e™%) = 5};_1 12 =5 (@ —04—1—6 .



More generally,

3 ReLis (af3) if |af, |8 <1,
_ ) LReLi, (2% if |a] >1,]8] <1
(5.1) m(l —az,1—Fz)=( 2 2\ Tap? =2 Lpl =1

L ReLiz (125 ) +loglallog|8] if |al,|8] > 1.
yields the equivalent of a Jensen’s formula for multiple Mahler measure:
0 if |a| <1,

m(l —az) = log|a| if |af > 1.

Ezercise 26. Prove Equation (5.1).

Ezxercise 27. Prove that

- ; 1 cos2m((k+1)B — la)
1— 1— 2T 1— 2mif3 - _ -
m(l — z, e“ Yy, e“™Px) 1 Z P
ki>1
1 cos 2m((k +m)a — mp3)

4 o) km(k +m)

1 cos 27 (la + mp)

4 ) Im(l 4+ m)

Multiple higher Mahler measure has applications to the computation of the higher Mahler measure.
For example, Theorem 5.3 is proven as a consequence of the following result.

Theorem 5.6. ([LS11])If P(x) € Z|x] is reciprocal, then

3
[\v]

N}

This inequality is sharp, with equality for x — 1.
Proof. (Theorem 5.3 from Theorem 5.6) First suppose that h = 2 and P(z) non-reciprocal. Let d = deg P,
and consider P*(z) = x?P(x~1). Thus P(z)P*(x) € Z[x] is reciprocal. Moreover, my(P) = mg(P*) =
m(P, P*), thus,

my(PP*) = ma(P) + 2m(P, P*) + ma(P*) = 4ms(P).
We obtain the desired bound by applying Theorem 5.6 to PP*.
The rest of the proof (for h > 2) is left as an exercise. @

Ezxercise 28. Complete the proof of Theorem 5.3 by proving
(a)
may (P) > my(P)",
(b)
mop, (P) > m(P)?",

Open Question 1. Is it possible to improve the bounds in Theorem 5.37

Ezxercise 29. With the help of a computer explore the values of the higher Mahler measure in polynomials.
For example, compute my for the polynomials in Exercise 7.

16



Open Question 2. Can you find P € Z[z] non-reciprocal with ma(P) < ma(z3+z+1) = 0.3275495729. ..

(Notice that 7z = 0.2056167583. . ..)

Theorem 5.7. ([KLOO08])

me(l—z+y(l+az)) = ;(le,l(—% —i) — Lis 1 (i, 7))
—&—;(le(z, —1) — Lig 1 (—1i,1))
(. ) . . 7¢(2)  log2
i (1, i)~ Lia (1,0)) — &) B2 )

Proof. First notice that

(52) mo(l—z+y(l+a) =m ((1 _x) +y) +2m ((m) +y,1+x> +mo(1+2).

1+z
1—x dx dy
(m)“/ T

2
1 1
dj_’_ 7L1 ‘ +z
T 270 Jig =1, a2 142 2 L—x

For the first term, we have

w((52) o) = o fo L1

By applying (5.1), the above line becomes

H de
X

1 1 ’ 1-z
o - Liz
218 Jjo|=1, |1-2|<| 140 2 1+z

1 9|1l —x|dx
9 log =
216 Jizj=1, |1-2|2|1+a] 1+z| 2
L 1- d 1 1—2ld
i b ’ ; == log” e
271 |z|=1, |1—z|<|1+z]| 1+ x 211 lz|=1, |1—a|>|1+a| 1+z| =

For the second term in equation (5.2) we obtain

w((752) vve) =ame [ L e
1+ ’ CXTIEN W

By Jensen’s formula respect to the variable vy,

! 1
= — Og
21 |z|=1

d
10g|1—|—x| de Y,
Y

e|(152) +

1-—
10g|1—|—x|— — log
270 Jiaj=1, 1 —al1tal |1+

1-—
172 log\1+x|—

Then equation (5.2) becomes

1 . 1—z|*\ da
Nl (’Hr )x
% e |17$|Z|1+w‘(log2 11—z —log? |1 + x\)i—x
(5.3) +@.

For the first term in (5.3), set @ = €%,

1 . ‘ 1—2x
e Liy
270 Jjz)=1, 1—a|<|1+a] L+

9 (7
_;[

jus
4

Y dz
x

4 ™
Liy (tan®6) do = — / " (Liy (tan8) + Liz (— tan 8))de.
T J)_=
4
17
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Now we make the change of variables y = tan 6.

8 [t .
7/0<L12<>+L12< 1)~

s

dy
y?

4 [
;/O(ng( + Liy (— ( 1zy>dy

4
= *(’L'Lig’l(i, —’L') + iLi271(_i, —’L) — ZL12 1 ) ZLIQ 1(2 Z))
™

For the second term in (5.3),
1
2 Jjz)=1, 102 140]
1 — (=1)kH! g
Z #2/4 cos(27k6) cos(2710)db
1

kl
k>1 Y

1— (_1)k+l Z'k+l+1(1 _ (_1)k+l) ik_l+1(1 _ (_1)k—l)
= 2 ( k+1 N k—1 )

d
(log? [1 — 2| — log? |1 + ) —
e

i (1 _ (_l)k—o—l)ik—o—l i (1 _ (_1)k+l)ik+l

2 2
= kl TS (k+ 1)

2i (1— (=1)Fhik=t 24 (1 — (=1)Frh)ikt
* k-2 7 by 2

k>1>1 k>1>1

(Lll( )ng(l) - Lll( )ng( ) ng 1(1 Z) + ng 1(1 —Z))

21
T

+ 3~

(¢(2)(Liy (i) — Liy(—1)) — Lig,1(—i,4) + Lig 1 (i, —1))

— L Cilog2L(x_4,2) - %g(z) ~Lina(1,4) + Lins (1, =)
+%(<(2)%i — Lig(—i,4) + Lins (i, —)).

Putting everything together in (5.3), we obtain the final result
my(1 -2 +y(1l+z))
= ;(ng,l(fz, —1i) — Lig1(4,1)) + ;(7L1271(71,z) + Lio 1 (4, —1))

7¢(2)  log2
16 + s

3

—|—7(—L1271(1,Z) +L1271(1,—Z)) - L(X_4,2).

3

®
This result may be contrasted to Smyth’s
2
m(l —z+y(l+z)) = ;L(X—4, 2).
FExercise 30. Prove the above formula from Theorem 4.4.

Naturally, we have the following generalization of the Zeta Mahler measure.

Definition 5.8. Let Py, ..., P, € Clz7,. ..
measure is defined by

ZSl,.. Sl,Pl,...,Pl)

/ / ‘P 2#191 . 7e27ri9r)

? ’I’L}

81 ..|pl (emel ezme,) s1
) )

18
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Its Taylor coeflicients are related to the multiple higher Mahler measure:
al
0sy -+ 0sy

Similarly to the case of x — 1, one gets

Z(O,...,O;Pl,...,Pl):m(Pl,...,Pl)

1
Z(s,t,x—1l,z+1) = /\2sin7r0|5\2cos7r0|td0
0

1/2
23+t+1/ (sin76)* (cos w0)"df.
0

Setting u = sin?(76),

1
Z(s,t,x—l,z+1) = / u'T(l—u)Tldu
0

B I'(s+1I'(t+1)

O T(E+)T(E+1)T (3 +1)

_ ﬁ(H% (L+457) (1+57)

= exp i(*l)kq(k){(l 27F) (s + %) —27F(s + 1)*}

=k
around s =t = 0.
Thus,
1
mz—1,...,2—1Lz+1,...,204+1) = /(log|2sin7r9|)k(log|2cos7r9\)ld9
0
k 1

belongs to Q[r?,¢(3),¢(5),¢(7),...] for integers k,I > 0.
We obtain, for instance, the following equalities.

1 2 2
m(r—1l,z+1) = / log [2sin 76| log |2 cos mf| df = B o7
o 4 24
1
m(z—1lz—1lz+1) = / (log |2 sin7r0|)2 log |2 cos 0| df = 2—C(83) = 74(43),
0

(3 _ B

1
m(z—1l,z+1,z+1) / log |2 sin 70| (log |2 cos w0|)?df = 2? =
0

Ezxercise 31. Prove the following.
(a) For a positive constant A, we have Z(s, AP) = A\*Z(s, P).
(b) Let P € C[zi?,..., 2] be a Laurent polynomial such that it takes non-negative real values in the

unit torus. Then we have the following series expansion on |A| < 1/ max(P), where max(P) is the maximum
of P on the unit torus:

Z(s,1+ \P) i (Z) Z(k, P)AF,

k=0

— (1! k
m(l+\P) = ZTZ(k,P)A .

k=1

19



More generally,
(-1)b

~ = Z(k;, P)\F.
ki...k; (k;, P)

m;(1+AP) = j1 )
0<ky <+ <k;
(¢) Z(s,P) = Z(%, PP), where we put P =Y aqa™“ for P = aqaz®. Note that PP is real-valued
on the torus.

Theorem 5.9. ([KLOO08]) Let ¢ > 2.

. Z(s,x+y+c) = c 3 (8/2)21.(2tj>

where the generalized hypergeometric series 3Fs is defined by

a1, asz, as — (a1),(a2);(as); ;
F z) = R A s
’ 2( by, b ) ; (b1);(b2);5!

with the Pochhammer symbol defined by (a); = ala+1)---(a+j —1).

1= (2k) 1
2 Z
mg(w+y+0)—log C+2k_1(k>k262k

0o 0o k—1

3 2k 1 3 2k 1 1
103
k=1 k=2 j=1
In particular, we obtain the special values
[ ]
2

mafar -y +2) = 2

9 15
mg(z +y+2)= 3 log 2¢(2) — IC(?’)-
The previous Theorem may be completed with the trivial statement
m(z +y+2) = log 2.

In fact, the motivation for setting ¢ = 2 is that this is the precise point where the family of polynomials
z + y + ¢ reaches the unit torus singularly. In classical Mahler measure, those polynomials are among the
simplest to compute the Mahler measure, and the same is true in higher Mahler measures.

6. LOG-SINE INTEGRALS AND MAHLER MEASURE

We consider the works of Borwein, Straub and collaborators [BS12, BBSW12, BS11].

Definition 6.1. For n a positive integer and k£ a non-negative integer, the generalized log-sine integral is
defined by

Ls) (o) := —/ 0k log" 17k
0

This integral was studied by Lewin who gave several evaluations [Le81]. We use the notation Ls, (o) for
the case k = 0.
Some special values are expressed in terms of polylogarithms, such as

1 & AT L(1+A)
_= Ls LA _ S\
wmz::o St (M = T a2

20
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which implies the recurrence

) . 5 =
( n!) Lspyo(m) =7(1 —=27")((n +1) + (k+1)!

and yields, starting from Lsq(7) = 0,

3
T
LS3(7T) ﬁ,
3T
LS4(7T) = ?C(?’%
19
LS5(7T) = _% 5,

Lsa(r) = 20¢(5) + 2n(3).

More generally, we have the following result from [BS11].
Theorem 6.2. ([BS11]) For 0 < 7 < 2w, and nonnegative integers n, k such thatn —k > 2,

k . .
1= 1) = 3 S Ly cagn (112 6)

j=0
k-l—l nlnklr n—1 i T
_ r—my (k+m)
e X X (n L) (5) o
r=0 m=0
Here are some results that were proved using properties of log-sine integrals.

o Let
mp(l+2z+y) =ml+z+y,l+z+ys,....,1 +x+yg).
Then, Sasaki [Sal0] proved
1 T 1
my(1+z+ys.) = ;LSkJrl (g) — ;Lsk+1 ().

In particular, [BS12] proved

2
mo(l+z+y.) = 51

9 : T
(142 +y.) = o—Tm (Lig(e™)),

6 . : 7
my(l+z+y.) = ;Im (L11’4(1,em/3)) ~ 360"

and similar formulas por k = 5, 6.
o Let

mp(l+z4+yc+2z)=m(l+ax+y+21, 1+ +y2+29,..., 1+ 4+ yr + 21).

Then, in [BS12]:
k

1 g 0 .
mg(l+ 2+ ye + 24) = W/ (010g (2sin 2) + D(619)> de.
0

In particular,

7
my(1 42+ g +2.) = - So2C(3)
T2

mo(l+ 2+ ye+ 24) = ﬁLil’g(l, -1) + 60"

21



e Other results from [BS12] include

2 1 19
m(l—l—x,l—l—x—i—y—l—z):ﬁ/\z; () — =,

2 720
4 1 3 31
m(l+z,1+z,1+2x+y+2)= 3?)\5 <2> — ZC(S)—’_WC@)’
where
n—2
—1)k —1)"
An (7)== (n —2)! ( k') Li,_x () log" |z| + () log" |z|.
! n
k=0
e Examples involving higher Mahler measure were computed in [BBSW12]
3 27 2
mo(l+z+y) = ;LSg <3) + i
6 2 9 ; ; 13
ma(1 -+ 9) 2 2t () - 2w (1ia(e) - F06) - o)
T T

FEzxzercise 32. Find
<1 +z+ y)
mo (| —— .
l+z+ 2

Open Question 3. Is it possible to express Ls,, ( %ﬂ) in terms of polylogarithms so that the above formulas

only contain polylogarithms? (Perhaps using Theorem 6.27)

Open Question 4. Investigate identities between log-sine integrals and polylogarithms with the help of
the program developed by Borwein and Straub in [BS11].
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7. SOME SIMPLE SAGE ROUTINES

Specify that the polynomials are over C:

sage: complexpoly.<x>=PolynomialRing(CC)
sage: load ("mahler.sage")

7.1. Mahler measure for one-variable polynomials.
def mahler(p):
m=0
for rm in p.roots():
rt=rm[0]
mul=rm[1]
if abs(rt)>1:
m=m+log(abs(rt))*mul
return(m)

7.2. Higher Mahler measure of order 2 for one-variable polynomials.
def mahler2(p):
m2=0
for rml in p.roots():
rti=rmil[0]
muli=rmil[1]
for rm2 in p.roots():
rt2=rm2[0]
mul2=rm2[1]
if abs(rt1)<=1 and abs(rt2)<=1:
m2=m2+real (dilog(rti*conjugate (rt2)))/2*mull*mul?2
if abs(rtl)<=1 and abs(rt2)>1:
m2=m2+real (dilog(rtl/conjugate(rt2)))/2*mull*mul2
if abs(rt1)>1 and abs(rt2)<=1:
m2=m2+real (dilog(rt2/conjugate(rtl)))/2*mull*mul2
if abs(rt1)>1 and abs(rt2)>1:
m2=m2+(real (dilog(1/rt2/conjugate(rtl)))/2+log(abs(rtl))*log(abs(rt2)))*mull*mul2
return(m2)

7.3. General higher Mahler measure for one-variable polynomials.
This sometimes works.

sage: x=var(’x’)

sage: (log(abs(l-exp(I*x)))/2/pi).nintegral(x,0,2*pi)

74. A,.
def delta(n,p):
pr=1
for r in p.roots():
rt=r[0]
mul=r[1]

pr=pr*((rt"n-1) "mul)
return int(round(real_part(pr)))

7.5. Log-sine integrals. The package logsine.sage is available at http://arminstraub.com/software/lstoli-sage
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8. SUGGESTIONS FOR THE EXERCISES

Suggestion 1. By

(ars _ 1) — (CLT _ 1)(a(s—1)r + a(s—2)r NI a” + 1)’
we have that a — 1 is a nontrivial divisor of a? — 1 unless a — 1 = 1, in which case a =2, or a? — 1 =a — 1,
in which case p = 1.
Suggestion 2. By Fermat’s little theorem, 297! = 1 mod q. We have, by hypothesis, 2° = 1 mod ¢. Since
p is prime, we must have that p is the order of 2 modulo ¢q. Therefore, p | ¢ — 1. Since ¢ is also odd, we can
write ¢ = 2pk + 1.
Suggestion 3. If n divides m, then m = kn for some k£ > 1 and

d

Akn(P) . n (k—1)n
A (P) _E(1+ai+-~-+ai )

is a symmetric function of the roots of P, and so is an integer.
Suggestion 4. Fix £, an nth root of unity. If the roots of P(x) are o, then the roots of P(z™) are ai/nfﬁ
fork=0,...,n—1and ai/n an nth root of «;. In addition, |a;/"§§| = |oi|*/™, so |a;/"§,’§
either > 1 or < 1 at the same time. We have

M (P(2)) = |a| ] max{1, ]} = |af ] [ max{L, s/} = |a| [T ] [ max{1, lai&s[*/"} = M(P(z™)).
i % ik

| and |o;| are both

Suggestion 5. If P(x) = aga’ +--- +ag = aq T[,( — ), then a;/az = (—1)"7s,_(ax) where

sj(ok) = Z Qg -+ QU

k1<...<k;j

are the elementary symmetric polynomials. Observe that
o, -+ o, | < HmaX{L |k |}
k

It is then clear that

i = laasa-stenl < (4 sy = () arce)

Suggestion 6. (a) The polynomial 522 — 6x + 5 has % as a root.

(b) If a degree three integer polynomial has roots aq, g, ag with |a1| = 1 and ag = @7, then ajasas =
a1ajag = ag € Z. Thus a4 is a root of a monic integer quadratic which is impossible unless «; is a root of
unity.

For degree 4, an example is given by

a2t + 422 — 222 + 4+ 1

V2 —1+i\/2v2 -2
has absolute value 1.

Suggestion 7. These values can be computed with mahler.sage
(a) 0.1623576120
(b) 0.1958888214
(c) 0.1823436598
(d) 0.1844998024
Suggestion 8. Some of these values can be computed with delta.sage. However, for larger values it is
better to use a recurrence of the A,, as proved in [Le33], section 8.
Suggestion 9. We have

whose root

1/d =1 , . 4 ya—l
(yl—l_”yd—l)/ el
n Yd B d
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and

1 L_|_..._|_
7a < d
1/d

(Y1 ya)
Summing both inequalities and multiplying by (y1 - - - ya)
(1= 1) (a = )"+ 1< (gya)
Suggestion 10. We see from Equation (1.1) and Exercise 9 that the condition for equality is M (P) =
/2
(1+T\/5> that occurs when all the a; with ;| > 1 are equal and all the «; with |o;| < 1 are equal. That
/2
means that P(z) = ((z — a)(x — 8))¥? with || > 1, |8] < 1, and M(P) = (1+T‘/5) . Thus, o = 1£¥5

2
and we must have 8 = 1%/3 and P = (22 — 2 — 1)%2.
Suggestion 11. If we relax the condition |P(0)| = 1, say that |P(0)| = ¢. Then M(P) = ﬁ and
al<1 1%

E=c(M(P)*4— M(P)_2/d)d. Thus, the conclusion is
M(P)¥? — M(P)~%4 > 2.
/2
Thus, M(P) > (ii v2+4) .

Suggestion 12. Using exercise 5, we have (a)

L(P) = Z la;| < Z (?)M(P) = 27M(P),

(b)
H(P) = max|a;| < max (?) M(P) < 2471 M (P).

In the last step, we have used (‘j) < 291 for d > 1 which can be proven by induction.
Suggestion 13. (a) Write

_ lmt1 in
Py (Tt 1, Tn) = E kot oo Ko 41 yeeerin Tl " Ty
i]
Thus,
dy
k
P(zy,...,xz,) = E Py, (z2,. .., xn)x]"
k1=0
and
dom,
km
Pk Ty oy ) = E Py ke Tty - T )™
Em=0

By Exercise 5, we get
dm Ay dm d dm
o1l = (o) < ()00 < () ()M )< () - (G ) ot
kn kn—l k'n kl kn
(b) The upper bound is proved in a similar way as Exercise 12(a). For the lower bound, just notice that
|P(e2™0 20| < L(P).
(¢) The upper bound is proved in a similar way as Exercise 12(b).
Suggestion 14. Write P(z1,22) = a (1 + Q(wl’“)). Then m(P) = log|a| + m (1 + M) Since

a a
‘Q(zl,m)
a

< 1, log (1 + M) can be expanded as a Taylor series uniformly convergent in (z1,xs).
The integral of this is zero, since the individual terms vanish. Taking the real part of the logarithm,
m (14 Q) — g,

Suggestion 15. Using Euclidean algortithm, A can be written as a product of integer matrices which are

of the following three types: 1) upper triangular with 1’s in the diagonal, 2) lower triangular with 1’s in the
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diagonal or 3) diagonal. It is easy to see that the Mahler measure is invariant by types 1) and 2) and for the
type 3), we have, by setting k;0; = 7,

1 1 k k
) , 1 1 n . .
/ / log | P(e> k101 2miknbu)dg, ... df, = 7/ / log |P(e2™™ ..., e*™™)|dry ... dr,
0 0 kv kn Jo 0

1 1
= / e / log |P(e2™™, ..., e*™i™n)
0 0

Suggestion 16. This can be achieved by, for instance,

dry...dr,.

sage: for n in range (1,100):
R mahler (x"n+x+1)

Suggestion 17. By Jensen’s formula, it is enough to evaluate

1 1
I:/ / logmax { |14 ™| |1 + *™%|} d6, df,
0 Jo

1 2 2m )
=— log max { |1 + ¢
=/ {

1 s s .
:p/o /0 logmax{’l—i—e”l

2 s . ™
— / log ‘1 + e”"‘| / dt1dts
™ Jo to

2 (7 ;
:P/o log 1+ €2 (m — t2)dts

1+ e[} dtydty

)

1+ €|} ditydts

)

:_%/ log |1+ €'*2| tadts.
™ Jo

In 0 <ty < 7, we have

2 T X (_1)neitn
I =Re| — t ——dt
_ 2 - (_1 " T itn
=Re <7T2 ; - /O te dt)

23 (w55
33 (3- 1)
- % (8) - ;g (2;)3

7

Suggestion 18. (a) We have

Lin(1)+Lin(—1):iﬂ:2i Lo




Therefore,
Lin(—1) = (21_1 - 1) Li,(1) = (21_1 - 1) ¢(n).

(b) In this case we have
2 2kmi/3 _ p—2kmi/3

Lin(627ri/3) o Lin(672‘n’i/3) —

(]

Pt kn,
oo : 2km
_ Zw
kn
k=1
(oo}
x-3(k)
=v3
k=1
= \/gL(X,gﬂl).
Suggestion 20. We have
C(nl, cee 7nm) = (71)mIn1,...,nm(]— el 1)
Making the change of variable ¢ — 1 — t for each variable in the integral, we obtain
. /1 dt  dt dt dt  dt dt
(71) O—0Q0+++ 0 —O0Q+++0 — 0 —O0-+++0 —
o t—1 't t t—1 ¢ t
ni Nm
1
:(_1)m+2"k/ io...o dt oﬂo...o dt 0.0 dt o@
0 t—1 t—1 ¢ t—1 t—1 ¢
MNm ni
= (D)™ 11, 1L D)
—— ~——

nm —2 ny—2
=¢(1,...,1,2,...,1,...,1,2).
—— ——
Ny, —2 ny—2

Suggestion 21. First notice that this Mahler measure depends only on |a| (since y and z can absorb
number of absolute value 1 in the integration). For |a| < 1 this proof is done exactly in the same way as

Exercise 17. For |a|] > 1, we have,
1+= +z
m(l + z 4 ay + az) :10g|a+m<a+y+z) :10g|a|+m<l—|—x+ya)

since we can exchange the variables z,y, z and the constant term in the integral by symmetry. Then apply
the formula for |a| < 1.
Suggestion 25. Observe that

(=) ()

1 1
_ j!(k—j)!/ dt o, / a2
o t—a~ t—at Jy t—=x t—ux

k—j

J k—j
Combining the previous equalities gives
1 d
mg(l—2)=— logk|1—m|—x
211 |z|=1 X
e 1 Lodt dt [t dt dt  dw
= 727 7710...0 ) Q+++0 —_
2 j:02m lz|=1Jo t— t—x o t—x t—z x
J k—j



% in the second (k — j)-fold integral, the above

k!zk: 1 / /w ds ds /w ds ds da
- O+++0 O-+++0 —_—.
2kj202m' lz|=1Jo s—1 s—1J/ s—1 s—1ux

We proceed to compute the integrals in terms of multiple polylogarithms:

k
(=1)*k! 1 / alimme— dx
1-— = — —
mk( JC) 2k ; 27 |z|=1 Z T

li...Limy...mg_;
0<ly <+ <lj<o0 0<my <+ <my_; <00 1 g1 k—j
k—1
(—1)FK! 1

= gkz Z

J=10<l1 < <lj_1 <u<oo, 0<my <+ <mp_;j_1 <u<oo

If we now set s = xt in the first j-fold integral and s =
becomes

ll . lj,1m1 . mk,j,luQ

Now we need to analyze each term of the form

(8.1) > !

Iy o ljymy .o j_qu?’
O<l1<'--<lj71<u<oo,0<m1<-~~<mk7j71<u<oo 1 J—1171 k=j-1

For an h-tuple ai,...,ap such that a; +--- + ap, = k — 2h, we set

d - 3 (al) (ah) - (al +.. +ah) - (k B Zh)
Al @h T e = _ ) )
e1+-ten—j—h €1 €p 61+...+eh j *h

Then the term (8.1) is equal to

min{j—1,k—j—1}

S a2 {10, 2)

h=1

Note that each term ¢({1}4,,2,...,{1}a,,2) comes from choosing h — 1 of the I’s and h — 1 of the m’s
and making them equal in pairs. Once this process has been done, one can choose the way the other [’s and
m’s are ordered. All these choices give rise to the coefficients dg, .. o

The total sum is given by

h*

k—1
mk(l - x) = Z Cal,..,,ah,g({l}a1727 cet {1}ah,7 2)’
h=1

where

_(—1)kR! ki (k— 2h) _ DR _ (CDRR

Cay,..,an, = ok — ] —h 9k - 92h
j=

On the other hand,
C{1}a152, ..., {1}4,,2) =Clan +2,...,a1 + 2).
Thus, the total sum is
my(1l — ) = > %{fklg(bl,...,bh).
byt-Hbp=k, b;>2
Suggestion 26. First assume that |«|,|3] < 1. Then the proof is similar to Theorem 5.5, the final step
being

1 <= cos(2mk) |8k
m(l—a;p,l—ﬁm)252%,
k=1

L «
where €277 = %
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If |a| > 1 and |8] < 1, we have that m(1 — Sz) = 0 and

m(l —az,1 - fr) =m(a,1 - Bz) + m(a™ — 2,1 — B2)
= log|ajm(1 — Bz) + m(1l —a 2,1 — Bz)
=m(l—a 2,1 - p2),

and we are in the first case.
For |a| > 1 and |B| > 1, the previous identity becomes

m(1 — az,1 — fz) = log|a|log || + m(1 — a 'z, 1 — Bz)

and we apply the formula for the case |3| > 1 and |a~!| < 1.
Suggestion 27. Following a similar proof to Theorem 5.5, it is not hard to see that we are reduced to
compute

I= /1 cos(2mk6) cos(2ml(0 + «)) cos(2mm (6 + 3))d6.
0

But this equals

1

cos(2mkB) (cos(2m((I + m)0 + la+ mpB)) + cos(2m((I — m)0 + lao — mf)))do

=1
2
[ $cos(2m(la+mp)) ifl+m=k,

S—

3 cos(2m(la—mp)) ifl—m=k,
0 otherwise.

Suggestion 28. (a) For any positive integer h, let f and g be functions such that

1 d 1 d
— |f|h£ <00 and — \g|h/(h71)—x < 0.
2 2

T |z|=1 X T |z|=1 X

Then, by Holder’s inequality, we get that

h h—1
1 dx 1 dx 1 dx

2 L do) (L pda) (L AN
(5.2) (W /vl x) < (m | x) (m [ oS

In particular, taking f(z) = log? |P(x)| and g(z) = 1, we get that
mQ(P)h S mgh(P).

(b) On the other hand, by taking f(z) = log |P(z)| and g(z) = 1, and taking 2h instead of h in (8.2) we
get that

m(P)2h < map(P).

Suggestion 29. These values can by computed with mahler2.sage
(a) 1.7447964556
(b) 1.2863292447
(c) 1.3885013172
(d) 1.3845721865
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Suggestion 30. We set a = 1 in Theorem 4.4:

m((l+z)+(1—-2)y) =—

(
- _% i ((2;2_’@1)2 + (2(ki)21k)2>

where
1 if n=1 mod 4,
X—4(n)=¢ -1 if n=-1 mod 4,
0 if n=0 mod 2.
Suggestion 31. (a) and (c) are obvious. For (b), we may use the Taylor expansions in \;

'] s -1 k—1
(1+AP)* =" (Z) APE log(1+AP) =) () ]1 Ak P,
k=0 k=1
In particular, we may write
-1 (s—k+1
Z(s,14 AP) = kaH—)\P ZZkPAk ) (s—k+1)

k!

In other words, the coeflicients Wlth respect to the monomlal basis are the k-logarithmic Mahler measures
my (1 + AP), while the coefficients with respect to the shifted monomial basis are (the special values of) zeta
Mabhler measures Z(k, P)AF.

Combining these observations, we obtain the three equalities.
Suggestion 32. We have

<1+m+y
mo [t TY

— my(1 —om(1 1 1
1+x+z> mo(1+2+9) = 2m(1 424y, 147 +2) +ma(l 42+ 2)

277 2 2

2T 2572

fL .
S3 ( 3 ) + 51
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