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Introduction to the Blasso
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Problem description

Sparse linear models

Unknown sparse measure: m,, = 27:1 aj0g, where
a,€R, 6, €0 cCR

Observe linear model: Define ¢ : © — H continuous

®: M(O) = H, dm déf’/gp(ﬁ)dm(&)

©

(pir ;) —]
— Qi
L =5C="1

5'um  [Boulanger eteal. 2014]
—
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Problem description

Sparse linear models

Unknown sparse measure: m,, = 27:1 aj0g, where
a,€R, 6 €0 R

Observe linear model: Define ¢ : © — H continuous

Fourier measurements: () = (exp (2mi(0)) ,f € C2F+1,

Then,
y =om = <Z a; exp (27ri€6,-))
i=1

le|<F
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Problem description

Sparse linear models

Unknown sparse measure: m, = 27:1 a;j0g, where
a3, €R, 6, € ©cCR

Observe linear model: Define ¢ : © — H continuous

Deconvolution: p(0) = k(- — 0) € L2(RY). Then,

y = dm = Z a,'li(' = 9,)
=il
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Problem description

Sparse linear models

Unknown sparse measure: m, = 27:1 aj0p, where
a,€R, 6 €0 R

Observe linear model: Define ¢ : © — H continuous

®: M(O) = H, dm “ / ~(6)dm(0)

©

Laplace: ¢(0) = (exp(—0ty));_, € R™. Then,

y =ém= <Z a; eXp(—thk)>

i=1 k=1
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Multicompartment effects in imaging

We observe at voxel some time series measurement y € R7

y = ap(0)
i=1

where () € RT models the behaviour of tissue type 6 over
time.

Figure 1: Contrast maps in quantitative MRI. Understanding
multicompartment effects is important for accurate segmentation
and studies of brain disorders.
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The Beurling Lasso

Nonlinear least squares problem is nonconvex:

Z aip(0;) — y

2

+ Allall,
2

1
min —
a0 2
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The Beurling Lasso

Nonlinear least squares problem is nonconvex:
2

o1
r:n’leni Za;@(ei)—y + Allall,

2

The Beurling Lasso

Minimisation over the space of measures is convex:

.1 2
o [®m — y|5 + Allml[ 5, . (Pa(y))

[Beurling, '38, De Castro & Gamboa, '12, Bredies & Pikkarainnen, '13]

dm(z) = f(z)da J_;lﬂ_v
def.
Imilry = supgayce 225 Im(A)l-

Imllry = [Ifll,2 lma,xll 7y = llally
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The Beurling Lasso

Nonlinear least squares problem is nonconvex:
2

o1
r:n’leni Za;@(ei)—y + Allall,

2

The Beurling Lasso

Minimisation over the space of measures is convex:

i t. dm=
i il st sy (Po(y))

[Beurling, '38, De Castro & Gamboa, '12, Bredies & Pikkarainnen, '13]

def dm(z) = f(z)dx ALﬁﬂ_’
Imll;, = SUP{ 4,1 co 5 Im( A,

Imllry = [Ifll;2 llma,xll 7y = llally
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Key theoretical tool: dual certificates *

If you can find n = ®*p such that |n(t)| < 1 for all t & {0;};
and 7(6;) = sign(a;), then

e Exact recovery of m = Zj aj0g; from y = ®m by solving

Po(y)-
e Stable recovery of m = ZJ. ajog, from y = ®m + w by
solving P, (y), if in addition, sign(a;)n"(0;) < 0.

*Most Blasso papers make use of this result...
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Key theoretical tool: dual certificates *

If you can find n = ®*p such that |n(t)| < 1 for all t & {0;};
and 7(6;) = sign(a;), then

e Exact recovery of m = Zj aj0g; from y = ®m by solving

Po(y)-
e Stable recovery of m = ZJ. ajog; from y = dm + w by
solving Py(y), if in addition, sign(a;)n”(6;) < 0.

Minimal norm certificate

Most of the time, we look at

Vi, n(0;) = sign(a;)
Inlle < 1.

def. .
no = argmin, _4., ||p|| s:t.

*Most Blasso papers make use of this result...
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Minimum separation

Candes & Fernandez-Granda, CPAM 2012
Consider ¢(0) = (e2™?)
nondegenerate if

k<. In dimension 1 and 2, 7q is

o0

Agdéf'min\ﬁ,-—ﬁj] 2
i#j

SHO

This result is sharp: If m =y — dp and |6 — 6’| < % then no
dual certificate exists (and this actually means that recovery is
not possible).
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Minimum separation

Candes & Fernandez-Granda, CPAM 2012
Consider ¢(0) = (e2™?)
nondegenerate if

k<. In dimension 1 and 2, 7q is

o0

Agdéf'min\ﬁ,-—ﬁj] 2
i#j

SHO

This result is sharp: If m =y — dp and |6 — 6’| < % then no
dual certificate exists (and this actually means that recovery is
not possible).

We first need to understand the minimum separation for
arbitrary operators — need a metric to quantify what we mean
by two spikes being close...
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Fisher-Rao distance

For 6,0/ € © C RY, define K(,6") = (¢(8), p(#)).

Fisher metric:
g0 = V1V2K(0,0) = [Vo(0)][Ve(9)]T € RI*

Fisher-Rao geodesic distance:

w0.6)= gt [ oo @, 7
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Statistical interpretation: If ||p(0)| = 1, then (\90(6),-|2>. is

a probability distribution.
Given Py = ¢(6) and P, = o(x'):

- T - —
— e e
P2 N P2
R e \\
\‘. Y ""---.. N
! .'u H -"-
. 3
p1 % PL

The map 0 — (0) embeds © into the sphere in H and

w0.0)=__got | IOl
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Fourier: © =T, ©(8) = (™) <r 86 = f21d,
dy(0,0") = £. |6 — &,

111

Gaussian convolution: © = R¢
o(0) x elf—lz gy =¥, o
dg(0,0") = [|0 — &[]

0.0

Laplace transform © = R,
©(0) oc e, gy = diag(1/6;),
6y(0.8) = \/ 3, llog(6:/6) .
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Recovery under minimum separation

Theorem (P., Keriven, Peyré "19)
Let s € N and let (0;);_; be s.t. min;; dy(6;,60;) > A, k.

Then: 1y is nondegenerate.
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Recovery under minimum separation

Theorem (P., Keriven, Peyré "19)
Let s € N and let (0;);_; be s.t. min;; dy(6;,60;) > A, k.

Then: 1y is nondegenerate.

Examples:

Fourier coefficients: A = min (\/d\/g, 2d>.

Gaussian deconvolution: A = 4/log(s).

Laplace transform: A = d + log(ds).

The separation distance A i is independent of the problem

parameters!
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Compressed sensing result

m

E.g. ¢(f) = (e ™) " where |k| < f are drawn randomly.
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Compressed sensing result

E.g. o(0) = (e 2?) "  where |k| < f are drawn randomly.
Setting:

m

Let (2, ) be a probability space and let p(6) = (©., (0)),_;
where wy A

Consider recovery from y = & (37_; asdp,) + w.
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Compressed sensing result

E.g. o(0) = (e 2?) "  where |k| < f are drawn randomly.

Setting:
Let (2, A) be a probability space and let ¢(0) = (¢w, (9));-;
where wy A
Consider recovery from y = & (37_; asdp,) + w.
Assumptions:

e Let 6 € ©° be such that minj, dy(6;, 0x) = A.

e Let p >0 and

m > Cg-s - (log*(s/p) + log(N“/p))
where C; and N depends on the derivatives of ¢, and the

domain diameter supy g co dy(0,0'). 123



Compressed sensing result

Theorem (P., Keriven, Peyré '19)

Let A ~ ||w|| //s. With probability at least 1 — p, any
solution m to Py(y) satisfies the following discrepancies to
the true measures m,y:

rjriaflaj =g <2 wll. and TZ(Iml,|msel) < 572 lwl|.

where
ef. . A A A A
T2(p,v) Einfap W2(0,0) + I — Al + lv = 2ll 7y
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Examples and remarks

Sampling Fourier coefficients with © = [0, 1]¢:

m~ d?- s (log?(s) + log(£?))
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Examples and remarks

Sampling Fourier coefficients with © = [0, 1]¢:

m~ d?- s (log?(s) + log(£?))

Sampling the Laplace transform with © = (0, 1]¢ with
A(t) < e=t and a; ~ d:

m~d°-s- (Iog2(m) log?(s) + log*(m) |0g(|0g(m)d))
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Examples and remarks

Sampling Fourier coefficients with © = [0, 1]¢:
m~ d*- s (log*(s) + log(£?))

Sampling the Laplace transform with © = (0, 1]¢ with
A(t) < e=t and a; ~ d:

m~d°-s- (Iog2(m) log?(s) + log*(m) |0g(|0g(m)d))

Remark: Previous result by Tang et al. (2013) for sampling
Fourier coefficients in 1D, but their result assumes that
sign(a;) are distributed uniformly iid.
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Applying the Blasso to qMRI
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Magnetic resonance imaging

MRI is one of the main applications of compressed sensing,
this allows for subsampling

. 1 2
min Allx|l; + 5 [l Fax =yl
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Magnetic resonance imaging

MRI is one of the main applications of compressed sensing,
this allows for subsampling

. 1 2
min Allx|l; + 5 [l Fax =yl

Traditional MRI:

e The MR signal is obtained by applied the same radio
frequency (RF) pulse repeatedly.

e x € RY is a gray-valued image, which captures the
relative signal intensity changes between tissues, each
image voxel is weighted by so-called T1,T2 values.

16 /32



Quantitative MRI: measure T1,T2 values

Magnetic resonance fingerprinting [Ma et al '13, Nature]
allowed this to be done in short clinically feasible scan times.

e Allow the RF pulse to vary over time.

e This results in a time-series magnetisation images (TSMI)
X=|xx x - x| eR™

with v voxels and T timeframes.

e The time dependent signal in each voxel is compared to a
dictionary of fingerprints {(6;)}; C R":
e Precomputed by solving so-called Bloch equations,
e Each fingerprint corresponds to § = (T3, T») values

which depend on tissue type.
17/32



The quantitative MRI problem

Multicompartment effects: There can be more than one tissue

type appearing in one image voxel.

TSMI with v voxels and T timeframes:

X:|:X1 Xp - XV]ERTX"

For each x = x;,

x=Y cip(bs) ERT

e ¢, > 0 are mixture weights
e ©: O — R is the Block magnetisation response model.

e O is the domain of NMR properties.
18/32



Visualisation

6, = (784,77) 0, = (1216,96) 605 = (4083, 1394)
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The quantitative MRI problem

Previous approaches:
e discretize the domain ©, to {0}, form a dictionary
Dy [p(8r) 9(02) -+ w(6n)]
e solve for C € RN,
DyCT =X

where each column C; € RY correspond to the 6,
dependent mixture weights across all voxels.

Solve problem of form:
. 1 T 2
mC|n§HD9C —XHF+J(C)

20/ 32



Formulation as Blasso with vector-valued measures

Write m = Y25 CT6,, € M(O;RY).

Then, we have

om = [ ¢(6)am(6) = Y o(6.)C
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Formulation as Blasso with vector-valued measures

Write m = Y25 CT6,, € M(O;RY).

Then, we have
om = [ ¢(6)am(6) = Y o(6.)C
Remark: Other models are possible, e.g.

k
m = Z Cl g, (0s — ).
s=1

Then,
Om = <90*gcra Z Cs—r(595>
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Formulation as Blasso with vector-valued measures

Write m = Y25 CT6,, € M(O;RY).

Then, we have
dm — / (0)Am(0) = 3 (6. T

Total variation of vector valued measures

If a measure takes values in a normed space V endowed with
norm ||-||,,, then define

\m\v— sup ZHm My -

We need to choose ||-|,,.
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Sparse-group-Blasso

We consider regularisation with the following mixed norm:

Hr"Hg d:ei(l — B)Iml|, + 6v/v|ml,.

So:

1 2
i A —[|X - .
i Allm+ 51X — oml;

NB: 132, Gdsll = (1= 8) 2o, 1Gslly + Bvv 2o Gl

e > _||G||, enforces group sparsity.

e > . ||Gl|; enforces sparsity within each mixture map.
This is the continuous counterpart of the sparse-group lasso
[Simon, Hastie & Tibshirani, JCGS, 2013].
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Conditional gradient descent

Solve minyec f(x), C is a compact convex set in Banach space:

ye € argmin ¢ Vi(x)y
Xt+1 = (1 - ”}’t)Xt + VieVr
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Conditional gradient descent

Solve minyec f(x), C is a compact convex set in Banach space:
ye € argmin ¢ Vi(x)y
Xt+1 = (1 - ”}’t)Xt + VieVr
For our problem ming A [[m||;, + L [[ém — X|J3:
A <0 L 100 - X2 = X2 /2
Imll5 < [l0ll7y + 5 190 — X[ = [IX][}- /2.
Therefore, we solve
1
min £(t) = At + > [|X — om|2

where K = {(r, m) R, x M ; [m||, < t< |]XH,2E/(2>\)}.

Convergence of objective is O(1/k) with k being iteration.
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Frank-Wolfe/Conditional gradient iterations'

Inputs: TSMI X, Bloch model ¢(.), params a, 8 > 0.
Outputs: NMR parameters ), mixture weights C.
Initialise: i =0, ° = {}, C®={}, n° = Lo*X.
repeat

TFollows [Denoyelle et al, Inverse problems '19]
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Frank-Wolfe/Conditional gradient iterations'

Inputs: TSMI X, Bloch model ¢(.), params a, 8 > 0.
Outputs: NMR parameters ), mixture weights C.
Initialise: i =0, ° = {}, C®={}, n° = Lo*X.
repeat

Let 6 € argmaxgeo Yooy (7'(8)s — (1 — [3))2+

TFollows [Denoyelle et al, Inverse problems '19]
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Frank-Wolfe/Conditional gradient iterations'

Inputs: TSMI X, Bloch model ¢(.), params a, 8 > 0.
Outputs: NMR parameters ), mixture weights C.
Initialise: i =0, ° = {}, C®={}, n° = Lo*X.

repeat
v i 2
Let 6 € argmaxgeo Yooy (7'(8)s — (1 — 5))+
9tz = 0' U {6}

TFollows [Denoyelle et al, Inverse problems '19]
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Frank-Wolfe/Conditional gradient iterations'

Inputs: TSMI X, Bloch model ¢(.), params a, 8 > 0.
Outputs: NMR parameters ), mixture weights C.
Initialise: i =0, ° = {}, C®={}, n° = Lo*X.

repeat
v i 2
Let 6 € argmaxgeo Yooy (7'(8)s — (1 — 5))+
9tz = 0' U {6}

2
- , )
Cith € argminc g 3[|X = D,y CHF +alCll,

TFollows [Denoyelle et al, Inverse problems '19]
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Frank-Wolfe/Conditional gradient iterations'

Inputs: TSMI X, Bloch model ¢(.), params a, 8 > 0.
Outputs: NMR parameters ), mixture weights C.
Initialise: i =0, ° = {}, C®={}, n° = Lo*X.

repeat
v i 2
Let 6 € argmaxgeo Yooy (7'(8)s — (1 — 5))+
9tz = 0' U {6}

2
- , )
Cith € argminc g 3[|X = D,y CHF +alCll,

Initialising with C't1/2 and #'t1/2, solve

(€4%,0°3) € argmin 3 X ~ o€+

TFollows [Denoyelle et al, Inverse problems '19]
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Frank-Wolfe/Conditional gradient iterations'

Inputs: TSMI X, Bloch model ¢(.), params a, 8 > 0.
Outputs: NMR parameters ), mixture weights C.
Initialise: i =0, ° = {}, C®={}, n° = Lo*X.

repeat
v i 2
Let 6 € argmaxgeo Yooy (7'(8)s — (1 — 5))+
9tz = 0' U {6}

2
- , )
Cith € argminc g 3[|X = D,y CHF +alCll,

Initialising with C't1/2 and #'t1/2, solve

(€4%,0°3) € argmin 3 X ~ o€+

Define ni*! = L&*(X — Dy (CTF1) 1)

TFollows [Denoyelle et al, Inverse problems '19]
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Frank-Wolfe/Conditional gradient iterations'

Inputs: TSMI X, Bloch model ¢(.), params a, 8 > 0.
Outputs: NMR parameters ), mixture weights C.
Initialise: i =0, ° = {}, C®={}, n° = Lo*X.

repeat
v i 2
Let 6 € argmaxgeo Yooy (7'(8)s — (1 — 5))+
9tz = 0' U {6}

2
- , )
Cith € argminc g 3[|X = D,y CHF +alCll,

Initialising with C't1/2 and #'t1/2, solve

(€4%,0°3) € argmin 3 X ~ o€+

Define 7™ = L&*(X — Dyina (CH1)T)
i=i+1
until supger 351 (15(0) — (1 - )3 < v

Follows [Denoyelle et al, Inverse problems '19]
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Setup for numerics

The MRF data came from a healthy volunteer's brain, a
variable density spiral trajectory was used for k-space sampling.

e MRF excitation sequences with T = 1000 timepoints.
That is () € R". Acquisition window around 10s.

e The number of image voxels per timeframe is 230x230.

e First recover the TSMI from k-space measurements using
LRTV. This is standard compressed sensing with TV
regularisation.

e We then apply SGB-Lasso to recover mixture maps.
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qMRI tricks... Phase correction !

Typically, TSMI is complex valued, however, it is often assume
to have constant-valued phase which can be subtracted and
removed.

Useful because positivity constraint helps in practice.

JtJiang et al., MRI, 2015; Nagtegaal et al., Magnetic resonance in

medicine, 2020.
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qMRI tricks... Low rank approximations ®

It is observed that Block responses have low rank

approximations
p(0) = VV T p(0)

where V € R™*™ with 7 < T (we took 7 = 10) and the
columns of V form an orthonormal system.

This V comes from PCA of a large simulated dictionary.

So, instead, work with » = VT () € R” and X = VT X.

SMcGivney et al. IEEE TMI (2014). Cline et al. MRI (2017)
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qMRI tricks... Neural network approximations. 9

Instead of working with ¢ = V' T¢(f) € R7, train a 2 layer
neural network

N:0eor— @0).

This means that ¢ and its Jacobian can be evaluated
efficiently.

IChen et al, MICCAI (2020); Gémez et al, Scientific reports (2020)
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Effects

0.0001

B =

0.001

B =
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Comparison against baseline methods:

e PVMREF II. Estimate dictionary using k-means
e SPIJN ** Group sparsity regularization.

e BayesianMRF T Enforces sparsity.

T1 (ms)
Tissue Literature ~ SGBlasso PVMRF SPIJN  BayesianMRF
WM 694 — 862 829 806 699 821
GM 1074 — 1174 1114 1165 1483 874
T2 (ms)
Tissue | Literature SGBlasso PVMRF SPIJN BayesianMRF
WM 68 — 87 81 80 51 77
GM 87 — 103 102 105 164 82

IDeshmane et al, NMR in Biomedicine, 2018
“*Nagtegaal et al, Magnetic resonance in medicine 2020

tTMcGivney et al, Magnetic resonance in medicine 2018
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Comparison with existing methods

PVMRF SGBlasso

SPIIN

BayesianMRF
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e Introduction of the Fisher metric, which offers a way of
imposing the separation condition. This provides a unified
way of approaching nontranslational invariant problems.

e The Blasso framework gives promising results for the
problem of multi-compartment analysis in MRF.

Papers:

® The geometry of off-the-grid compressed sensing, P., Keriven &
Peyré, arXiv:1802.08464
® An off-the-grid approach to multi-compartment magnetic resonance

fingerprinting, Golbabaee & P., arXiv:2011.11193
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e Introduction of the Fisher metric, which offers a way of
imposing the separation condition. This provides a unified
way of approaching nontranslational invariant problems.

e The Blasso framework gives promising results for the
problem of multi-compartment analysis in MRF.

Papers:

® The geometry of off-the-grid compressed sensing, P., Keriven &
Peyré, arXiv:1802.08464
® An off-the-grid approach to multi-compartment magnetic resonance

fingerprinting, Golbabaee & P., arXiv:2011.11193

Thanks for listening
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